Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Heat kernel estimates based on Ricci curvature integral bounds

(Autor)

Buch | Softcover
XIV, 114 Seiten
2017
Universitätsverlag Chemnitz
978-3-96100-032-6 (ISBN)

Lese- und Medienproben

Heat kernel estimates based on Ricci curvature integral bounds - Christian Rose
CHF 18,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Any Riemannian manifold possesses a minimal solution of the heat equation for the Dirichlet Laplacian, called the heat kernel. During the last decades many authors investigated geometric properties of the manifold such that its heat kernel fulfills a so-called Gaussian upper bound. Especially compact and non-compact manifolds with lower bounded Ricci curvature have been examined and provide such Gaussian estimates. In the compact case it ended even with integral Ricci curvature assumptions. The important techniques to obtain Gaussian bounds are the symmetrization procedure for compact manifolds and relative Faber-Krahn estimates or gradient estimates for the heat equation, where the first two base on isoperimetric properties of certain sets. In this thesis, we generalize the existing results to the following.

Locally uniform integral bounds on the negative part of Ricci curvature lead to Gaussian upper bounds for the heat kernel, no matter whether the manifold is compact or not. Therefore, we show local isoperimetric inequalities under this condition and use relative Faber-Krahn estimates to derive explicit Gaussian upper bounds.

If the manifold is compact, we can even generalize the integral curvature condition to the case that the negative part of Ricci curvature is in the so-called Kato class. We even obtain uniform Gaussian upper bounds using gradient estimate techniques.

Apart from the geometric generalizations for obtaining Gaussian upper bounds we use those estimates to generalize Bochner’s theorem. More precisely, the estimates for the heat kernel obtained above lead to ultracontractive estimates for the heat semigroup and the semigroup generated by the Hodge Laplacian. In turn, we can formulate rigidity results for the triviality of the first cohomology group if the amount of curvature going below a certain positive threshold is small in a suitable sense. If we can only assume such smallness of the negative part of the Ricci curvature, we can bound the Betti number by explicit terms depending on the generalized curvature assumptions in a uniform manner, generalizing certain existing results from the cited literature.
Erscheinungsdatum
Verlagsort Chemnitz
Sprache englisch
Maße 148 x 210 mm
Gewicht 193 g
Themenwelt Mathematik / Informatik Mathematik
Schlagworte Gauss-Abschätzung • Mannigfaltigkeit • Mannigfaltigkeiten • Ricci-Krümmung • variable Krümmungsschranken • Wärmeleitungskern
ISBN-10 3-96100-032-8 / 3961000328
ISBN-13 978-3-96100-032-6 / 9783961000326
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 97,95