Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Dimensionality Reduction with Unsupervised Nearest Neighbors - Oliver Kramer

Dimensionality Reduction with Unsupervised Nearest Neighbors

(Autor)

Buch | Softcover
XII, 132 Seiten
2017 | Softcover reprint of the original 1st ed. 2013
Springer Berlin (Verlag)
978-3-662-51895-3 (ISBN)
CHF 179,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustrate the introduced concepts and to highlight the experimental results.

Part I Foundations.-

Part II Unsupervised Nearest Neighbors.-

Part III Conclusions.

From the reviews:

"The book provides an overview of the author's work on dimensionality reduction using unsupervised nearest neighbors. ... this book is primarily of interest to scholars who want to learn more about Prof. Kramer's research on dimensionality reduction." (Laurens van der Maaten, zbMATH, Vol. 1283, 2014)

Erscheinungsdatum
Reihe/Serie Intelligent Systems Reference Library
Zusatzinfo XII, 132 p. 48 illus., 45 illus. in color.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 235 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte Appl.Mathematics/Computational Methods of Engineer • Artificial Intelligence • artificial intelligence (incl. robotics) • Computational Intelligence • Engineering • Engineering: general • evolutionary computation • Management Decision Making • Maths for engineers • Operational Research • Operation Research/Decision Theory • Robotics • Self-Adaptive Heuristics
ISBN-10 3-662-51895-3 / 3662518953
ISBN-13 978-3-662-51895-3 / 9783662518953
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich