Higher Order Boundary Value Problems On Unbounded Domains: Types Of Solutions, Functional Problems And Applications
Seiten
2017
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-320-990-9 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-320-990-9 (ISBN)
This volume provides a comprehensive overview on different types of higher order boundary value problems defined on the half-line or on the real line (Sturm-Liouville and Lidstone types, impulsive, functional and problems defined by Hammerstein integral equations). It also includes classical and new methods and techniques to deal with the lack of compactness of the related operators.The reader will find a selection of original and recent results in this field, conditions to obtain solutions with particular qualitative properties, such as homoclinic and heteroclinic solutions and its relation with the solutions of Lidstone problems on all the real line.Each chapter contains applications to real phenomena, to classical equations or problems, with a common denominator: they are defined on unbounded intervals and the existing results in the literature are scarce or proven only numerically in discrete cases.The last part features some higher order functional problems, which generalize the classical two-point or multi-point boundary conditions, to more comprehensive data where an overall behavior of the unknown functions and their derivatives is involved.
| Erscheinungsdatum | 22.10.2017 |
|---|---|
| Reihe/Serie | Trends in Abstract and Applied Analysis ; 5 |
| Verlagsort | Singapore |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 981-320-990-9 / 9813209909 |
| ISBN-13 | 978-981-320-990-9 / 9789813209909 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90