Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

R: Recipes for Analysis, Visualization and Machine Learning (eBook)

eBook Download: EPUB
2016
959 Seiten
Packt Publishing (Verlag)
978-1-78728-879-9 (ISBN)

Lese- und Medienproben

R: Recipes for Analysis, Visualization and Machine Learning - Chiu (David Chiu) Yu-Wei,  Atmajitsinh Gohil,  Shanthi Viswanathan,  Viswa Viswanathan
Systemvoraussetzungen
73,19 inkl. MwSt
(CHF 71,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Get savvy with R language and actualize projects aimed at analysis, visualization and machine learning

About This Book

  • Proficiently analyze data and apply machine learning techniques
  • Generate visualizations, develop interactive visualizations and applications to understand various data exploratory functions in R
  • Construct a predictive model by using a variety of machine learning packages

Who This Book Is For

This Learning Path is ideal for those who have been exposed to R, but have not used it extensively yet. It covers the basics of using R and is written for new and intermediate R users interested in learning. This Learning Path also provides in-depth insights into professional techniques for analysis, visualization, and machine learning with R - it will help you increase your R expertise, regardless of your level of experience.

What You Will Learn

  • Get data into your R environment and prepare it for analysis
  • Perform exploratory data analyses and generate meaningful visualizations of the data
  • Generate various plots in R using the basic R plotting techniques
  • Create presentations and learn the basics of creating apps in R for your audience
  • Create and inspect the transaction dataset, performing association analysis with the Apriori algorithm
  • Visualize associations in various graph formats and find frequent itemset using the ECLAT algorithm
  • Build, tune, and evaluate predictive models with different machine learning packages
  • Incorporate R and Hadoop to solve machine learning problems on big data

In Detail

The R language is a powerful, open source, functional programming language. At its core, R is a statistical programming language that provides impressive tools to analyze data and create high-level graphics. This Learning Path is chock-full of recipes. Literally! It aims to excite you with awesome projects focused on analysis, visualization, and machine learning. We'll start off with data analysis - this will show you ways to use R to generate professional analysis reports. We'll then move on to visualizing our data - this provides you with all the guidance needed to get comfortable with data visualization with R. Finally, we'll move into the world of machine learning - this introduces you to data classification, regression, clustering, association rule mining, and dimension reduction.

This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products:

  • R Data Analysis Cookbook by Viswa Viswanathan and Shanthi Viswanathan
  • R Data Visualization Cookbook by Atmajitsinh Gohil
  • Machine Learning with R Cookbook by Yu-Wei, Chiu (David Chiu)

Style and approach

This course creates a smooth learning path that will teach you how to analyze data and create stunning visualizations. The step-by-step instructions provided for each recipe in this comprehensive Learning Path will show you how to create machine learning projects with R.


Get savvy with R language and actualize projects aimed at analysis, visualization and machine learningAbout This BookProficiently analyze data and apply machine learning techniquesGenerate visualizations, develop interactive visualizations and applications to understand various data exploratory functions in RConstruct a predictive model by using a variety of machine learning packagesWho This Book Is ForThis Learning Path is ideal for those who have been exposed to R, but have not used it extensively yet. It covers the basics of using R and is written for new and intermediate R users interested in learning. This Learning Path also provides in-depth insights into professional techniques for analysis, visualization, and machine learning with R - it will help you increase your R expertise, regardless of your level of experience.What You Will LearnGet data into your R environment and prepare it for analysisPerform exploratory data analyses and generate meaningful visualizations of the dataGenerate various plots in R using the basic R plotting techniquesCreate presentations and learn the basics of creating apps in R for your audienceCreate and inspect the transaction dataset, performing association analysis with the Apriori algorithmVisualize associations in various graph formats and find frequent itemset using the ECLAT algorithmBuild, tune, and evaluate predictive models with different machine learning packagesIncorporate R and Hadoop to solve machine learning problems on big dataIn DetailThe R language is a powerful, open source, functional programming language. At its core, R is a statistical programming language that provides impressive tools to analyze data and create high-level graphics. This Learning Path is chock-full of recipes. Literally! It aims to excite you with awesome projects focused on analysis, visualization, and machine learning. We'll start off with data analysis - this will show you ways to use R to generate professional analysis reports. We'll then move on to visualizing our data - this provides you with all the guidance needed to get comfortable with data visualization with R. Finally, we'll move into the world of machine learning - this introduces you to data classification, regression, clustering, association rule mining, and dimension reduction.This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products:R Data Analysis Cookbook by Viswa Viswanathan and Shanthi ViswanathanR Data Visualization Cookbook by Atmajitsinh GohilMachine Learning with R Cookbook by Yu-Wei, Chiu (David Chiu)Style and approachThis course creates a smooth learning path that will teach you how to analyze data and create stunning visualizations. The step-by-step instructions provided for each recipe in this comprehensive Learning Path will show you how to create machine learning projects with R.
Erscheint lt. Verlag 24.11.2016
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
ISBN-10 1-78728-879-X / 178728879X
ISBN-13 978-1-78728-879-9 / 9781787288799
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Herbert Voß

eBook Download (2025)
Lehmanns Media (Verlag)
CHF 19,50
Management der Informationssicherheit und Vorbereitung auf die …

von Michael Brenner; Nils gentschen Felde; Wolfgang Hommel …

eBook Download (2024)
Carl Hanser Fachbuchverlag
CHF 68,35