Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Descriptive Set Theory of Polish Group Actions - Howard Becker, Alexander S. Kechris

The Descriptive Set Theory of Polish Group Actions

Buch | Softcover
152 Seiten
1996
Cambridge University Press (Verlag)
978-0-521-57605-5 (ISBN)
CHF 94,25 inkl. MwSt
Research monograph on set theory by two of the world's leading researchers.
In this book the authors present their research into the foundations of the theory of Polish groups and the associated orbit equivalence relations. The particular case of locally compact groups has long been studied in many areas of mathematics. Non-locally compact Polish groups occur naturally as groups of symmetries in such areas as logic (especially model theory), ergodic theory, group representations, and operator algebras. Some of the topics covered here are: topological realizations of Borel measurable actions; universal actions; applications to invariant measures; actions of the infinite symmetric group in connection with model theory (logic actions); dichotomies for orbit spaces (including Silver, Glimm-Effros type dichotomies and the topological Vaught conjecture); descriptive complexity of orbit equivalence relations; definable cardinality of orbit spaces.

Descriptive set theory; 1. Polish groups; 2. Actions of polish groups; 3. Equivalence relations; 4. Invariant measures and paradoxical decompositions; 5. Better topologies; 6. Model theory and the Vaught conjecture; 7. Actions with Borel orbit equivalence relations; 8. Definable cardinality; References.

Erscheint lt. Verlag 5.12.1996
Reihe/Serie London Mathematical Society Lecture Note Series
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 152 x 228 mm
Gewicht 218 g
Themenwelt Mathematik / Informatik Mathematik Logik / Mengenlehre
ISBN-10 0-521-57605-9 / 0521576059
ISBN-13 978-0-521-57605-5 / 9780521576055
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich