Degenerate Principal Series for Symplectic and Odd-Orthogonal Groups
Seiten
1996
American Mathematical Society (Verlag)
978-0-8218-0482-7 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-0482-7 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Studies reducibility in a certain class of induced representations for $Sp_{2n}(F)$ and $SO_{2n+1}(F)$, where $F$ is $p$-adic. This memoir is concerned with representations obtained by inducing a one-dimensional representation from a maximal parabolic subgroup.
This memoir studies reducibility in a certain class of induced representations for $Sp_{2n}(F)$ and $SO_{2n+1}(F)$, where $F$ is $p$-adic. In particular, it is concerned with representations obtained by inducing a one-dimensional representation from a maximal parabolic subgroup (i.e., degenerate principal series representations). Using the Jacquet module techniques of Tadic, the reducibility points for such representations are determined. When reducible, the composition series is described, giving Langlands data and Jacquet modules for the irreducible composition factors.
This memoir studies reducibility in a certain class of induced representations for $Sp_{2n}(F)$ and $SO_{2n+1}(F)$, where $F$ is $p$-adic. In particular, it is concerned with representations obtained by inducing a one-dimensional representation from a maximal parabolic subgroup (i.e., degenerate principal series representations). Using the Jacquet module techniques of Tadic, the reducibility points for such representations are determined. When reducible, the composition series is described, giving Langlands data and Jacquet modules for the irreducible composition factors.
Introduction Notation and preliminaries Components: useful special cases Reducibility points Components: the "ramified" case Components: the "unramified" case Composition series References.
| Erscheint lt. Verlag | 30.12.1996 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 227 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| ISBN-10 | 0-8218-0482-0 / 0821804820 |
| ISBN-13 | 978-0-8218-0482-7 / 9780821804827 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Anwendungen in Natur und Technik
Buch | Softcover (2021)
Springer Berlin (Verlag)
CHF 55,95