Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

AAL Data Cluster Analysis. Theory and Implementation (eBook)

(Autor)

eBook Download: PDF
2016 | 1. Auflage
GRIN Publishing (Verlag)
978-3-668-29954-2 (ISBN)

Lese- und Medienproben

AAL Data Cluster Analysis. Theory and Implementation - Dzenan Hamzic
Systemvoraussetzungen
18,99 inkl. MwSt
(CHF 18,55)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Bachelor Thesis from the year 2016 in the subject Computer Science - Applied, grade: 1, Vienna University of Technology, language: English, abstract: The e-Home project from the Vienna University of Technology is an R&D project with goals of providing assistive technologies for private households of older people with the idea to give them possibilities for longer and independent living in their homes. The e-Home system consists of an adaptive intelligent network of wireless sensors for activity monitoring with a central context-aware embedded system.

The primary goal of this thesis is to investigate unsupervised prediction and clustering possibilities of user behaviour based on collected time-series data from infrared temperature sensors in the e-Home enviroment.

Three different prediction approaches are described. Hourly Based Event Binning approach is compared to two clustering algorithms, Hierarchical Clustering and Dirichlet Process GMM. Prediction rates are measured on data from three different test persons.

This thesis first examines two different approaches for event detection from infrared signal data. In a second stage three different methods for unsupervised prediction analytics are discussed and tested on selected data-sets. Clustering algorithms parameter settings for time-series data have also been discussed and tested in detail. Finally the prediction performance results are compared and each method's advantages and disadvantages have been discussed.

The practical part of this thesis is implemented in IPython notebook. Python version was 2.7 on 64 bit Ubuntu linux 12.04 LTS. Data analysis has been implemented with Python’s Pandas library. Visualisations are made with Matplotlib and Seaborn libraries.

The results reveal that prediction accuracy depends on data quantity and spread of data points. The simplest method in prediction comparison, the Hourly Based Binning has however given the best prediction rates overall.

The Dirichlet Process Gaussian Mixture Models clustering show best prediction performance on smaller training data sets and well spread data. By further parameter tuning on Dirichlet Process GMM clustering the prediction rates could be further improved coming very close or even over performing the Hourly Based Binning.

Due to the unknown distribution and well spread data, choosing the right threshold parameter for the Hierarchical Clustering was trickier than initially assumed. Despite the initial assumptions for Hierarchical Clustering, this method was at least applicable for unsupervised prediction analytics on used data sets.
Erscheint lt. Verlag 15.9.2016
Verlagsort München
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Schlagworte cluster analysis • Gaussian Mixture Model • hierarchical clustering • hourly binning • Predictive Analysis • Python • sci-kit • Time-Series
ISBN-10 3-668-29954-4 / 3668299544
ISBN-13 978-3-668-29954-2 / 9783668299542
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95