Practical Data Analysis - Second Edition (eBook)
338 Seiten
Packt Publishing (Verlag)
978-1-78528-666-7 (ISBN)
A practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache Spark
About This Book
- Learn to use various data analysis tools and algorithms to classify, cluster, visualize, simulate, and forecast your data
- Apply Machine Learning algorithms to different kinds of data such as social networks, time series, and images
- A hands-on guide to understanding the nature of data and how to turn it into insight
Who This Book Is For
This book is for developers who want to implement data analysis and data-driven algorithms in a practical way. It is also suitable for those without a background in data analysis or data processing. Basic knowledge of Python programming, statistics, and linear algebra is assumed.
What You Will Learn
- Acquire, format, and visualize your data
- Build an image-similarity search engine
- Generate meaningful visualizations anyone can understand
- Get started with analyzing social network graphs
- Find out how to implement sentiment text analysis
- Install data analysis tools such as Pandas, MongoDB, and Apache Spark
- Get to grips with Apache Spark
- Implement machine learning algorithms such as classification or forecasting
In Detail
Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service.
This book explains the basic data algorithms without the theoretical jargon, and you'll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark.
Style and approach
This is a hands-on guide to data analysis and data processing. The concrete examples are explained with simple code and accessible data.
A practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache SparkAbout This BookLearn to use various data analysis tools and algorithms to classify, cluster, visualize, simulate, and forecast your dataApply Machine Learning algorithms to different kinds of data such as social networks, time series, and imagesA hands-on guide to understanding the nature of data and how to turn it into insightWho This Book Is ForThis book is for developers who want to implement data analysis and data-driven algorithms in a practical way. It is also suitable for those without a background in data analysis or data processing. Basic knowledge of Python programming, statistics, and linear algebra is assumed.What You Will LearnAcquire, format, and visualize your dataBuild an image-similarity search engineGenerate meaningful visualizations anyone can understandGet started with analyzing social network graphsFind out how to implement sentiment text analysisInstall data analysis tools such as Pandas, MongoDB, and Apache SparkGet to grips with Apache SparkImplement machine learning algorithms such as classification or forecastingIn DetailBeyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service.This book explains the basic data algorithms without the theoretical jargon, and you'll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark.Style and approachThis is a hands-on guide to data analysis and data processing. The concrete examples are explained with simple code and accessible data.
| Erscheint lt. Verlag | 30.9.2016 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik |
| ISBN-10 | 1-78528-666-8 / 1785286668 |
| ISBN-13 | 978-1-78528-666-7 / 9781785286667 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich