Navier–Stokes Equations on R3 × [0, T] (eBook)
226 Seiten
Springer International Publishing (Verlag)
9783319275260 (ISBN)
In this monograph, leading researchers in the world of numerical analysis, partial differential equations, and hard computational problems study the properties of solutions of the Navier-Stokes partial differential equations on (x, y, z, t) ∈ ℝ3 × [0, T]. Initially converting the PDE to a system of integral equations, the authors then describe spaces A of analytic functions that house solutions of this equation, and show that these spaces of analytic functions are dense in the spaces S of rapidly decreasing and infinitely differentiable functions. This method benefits from the following advantages:
- The functions of S are nearly always conceptual rather than explicit
- Initial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same properties
- When methods of approximation are applied to functions of A they converge at an exponential rate, whereas methods of approximation applied to the functions of S converge only at a polynomial rate
- Enables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more efficient method of solution, including accurate error bounds
Following the proofs of denseness, the authors prove the existence of a solution of the integral equations in the space of functions A ∩ ℝ3 × [0, T], and provide an explicit novel algorithm based on Sinc approximation and Picard-like iteration for computing the solution. Additionally, the authors include appendices that provide a custom Mathematica program for computing solutions based on the explicit algorithmic approximation procedure, and which supply explicit illustrations of these computed solutions.
Preface.- Introduction, PDE, and IE Formulations.- Spaces of Analytic Functions.- Spaces of Solution of the N–S Equations.- Proof of Convergence of Iteration 1.6.3.- Numerical Methods for Solving N–S Equations.- Sinc Convolution Examples.- Implementation Notes.- Result Notes.
| Erscheint lt. Verlag | 23.9.2016 |
|---|---|
| Zusatzinfo | X, 226 p. 25 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Technik | |
| Schlagworte | Integral equations • navier-stokes equations • Numerical Methods for Solving Navier-Stokes Equations • Partial differential equations • Sinc Convolution Examples • Spaces of Analytic Functions |
| ISBN-13 | 9783319275260 / 9783319275260 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich