Support Vector Machines and Evolutionary Algorithms for Classification
Single or Together?
Seiten
2016
|
Softcover reprint of the original 1st ed. 2014
Springer International Publishing (Verlag)
978-3-319-38243-2 (ISBN)
Springer International Publishing (Verlag)
978-3-319-38243-2 (ISBN)
When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this 'masked hero' be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance.
Support Vector Machines.- Evolutionary Algorithms.- Support Vector Machines and Evolutionary Algorithms.
From the book reviews:
"This book is intended for scholars, students, and developers who are interested and engaged in machine learning approaches and, particularly, in classification approaches via support vector machines (SVMs). ... the book is recommended to those with advanced knowledge in machine learning and, in particular, SVMs as a hypothesis modeling classification approach. ... the presentation of each topic remains systematic and the authors make good use of examples throughout the book." (Epaminondas Kapetanios, Computing Reviews, November, 2014)| Erscheinungsdatum | 22.09.2016 |
|---|---|
| Reihe/Serie | Intelligent Systems Reference Library |
| Zusatzinfo | XVI, 122 p. 31 illus. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Technik | |
| Schlagworte | Artificial Intelligence • artificial intelligence (incl. robotics) • classification • Computational Intelligence • Engineering • Engineering: general • evolutionary algorithms • Feature Selection • machine learning • multimodal optimization • Robotics • Rule Extraction • Support Vector Machines |
| ISBN-10 | 3-319-38243-8 / 3319382438 |
| ISBN-13 | 978-3-319-38243-2 / 9783319382432 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine praxisorientierte Einführung
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 53,15
Buch | Softcover (2025)
Reclam, Philipp (Verlag)
CHF 11,20
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …
Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95