Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Stochastic Modeling of Stock Prices Incorporating Jump Diffusion and Shot Noise Models (eBook)

eBook Download: PDF
2016 | 1. Auflage
97 Seiten
GRIN Verlag
978-3-656-98759-8 (ISBN)

Lese- und Medienproben

Stochastic Modeling of Stock Prices Incorporating Jump Diffusion and Shot Noise Models -  Daniel Janocha
Systemvoraussetzungen
36,99 inkl. MwSt
(CHF 36,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Master's Thesis from the year 2016 in the subject Mathematics - Stochastics, grade: 1,7, Technical University of Darmstadt (Forschungsgebiet Stochastik), course: Mathematik - Finanzmathematik, language: English, abstract: In this thesis, we present a stochastic model for stock prices incorporating jump diffusion and shot noise models based on the work of Altmann, Schmidt and Stute ('A Shot Noise Model For Financial Assets') and on its continuation by Schmidt and Stute ('Shot noise processes and the minimal martingale measure'). These papers differ in modeling the decay of the jump effect: Whereas it is deterministic in the first paper, it is stochastic in the last paper. In general, jump effects exist because of overreaction due to news in the press, due to illiquidity or due to incomplete information, i.e. because certain information are available only to few market participants. In financial markets, jump effects fade away as time passes: On the one hand, if the stock price falls, new investors are motivated to buy the stock. On the other hand, a rise of the stock price may lead to profit-taking, i.e. some investors sell the stock in order to lock in gains. Shot noise models are based on Merton's jump diffusion models where the decline of the jump effect after a price jump is neglected. In contrast to jump diffusion models, shot noise models respect the decay of jump effects. In complete markets, the so-called equivalent martingale measure is used to price European options and for hedging. Since stock price models incorporating jumps describe incomplete markets, the equivalent martingale measure cannot be determined uniquely. Hence, in this thesis, we deduce the so-called equivalent minimal martingale measure, both in discrete and continuous time. In contrast to Merton's jump diffusion models and to the well-known pricing model of Black and Scholes, the presented shot noise models are able to reproduce volatility smile effects which can be observed in financial markets.
Erscheint lt. Verlag 1.8.2016
Verlagsort München
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Black-Scholes • Finanzmathematik • jump diffusion • martingale measure • minimal martingale measure • Shot noise • stock price modeling
ISBN-10 3-656-98759-9 / 3656987599
ISBN-13 978-3-656-98759-8 / 9783656987598
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich