Signal Processing and Machine Learning with Applications
Springer International Publishing (Verlag)
9783319453712 (ISBN)
Signal processing captures, interprets, describes and manipulates physical phenomena. Mathematics, statistics, probability, and stochastic processes are among the signal processing languages we use to interpret real-world phenomena, model them, and extract useful information. This book presents different kinds of signals humans use and applies them for human machine interaction to communicate.
Signal Processing and Machine Learning with Applications presents methods that are used to perform various Machine Learning and Artificial Intelligence tasks in conjunction with their applications. It is organized in three parts: Realms of Signal Processing; Machine Learning and Recognition; and Advanced Applications and Artificial Intelligence. The comprehensive coverage is accompanied by numerous examples, questions with solutions, with historical notes. The book is intended for advanced undergraduate and postgraduate students, researchers and practitioners who are engagedwith signal processing, machine learning and the applications.
Prof. Michael M. Richter completed his PhD on mathematical logic at the University of Freiburg, and his Habilitation in mathematics at the University of Tübingen. He taught at the University of Texas at Austin and at RWTH Aachen, in addition to numerous visiting professorships. Most recently he held a chair in computer science at the University of Kaiserslautern, where he was also the founding scientific director of the DFKI (German Research Center for Artificial Intelligence). He is currently an adjunct professor at the University of Calgary. He has taught, researched, and published extensively in the areas of mathematical logic and artificial intelligence. Prof. Richter is one of the pioneers of case-based reasoning: he founded the leading European event on the subject, he led many of the key academic research projects, and he demonstrated the real-world viability of the approach with successful commercial products. Dr. Sheuli Paul completed her PhD on a dynamic automatic noisy speech recognition system in Kaiserslautern. Her interests include speech recognition and signal processing.
Part I Realms of Signal Processing.- 1 Digital Signal Representation.- 1.1 Introduction.- 1.2 Numbers.- 1.2.1 Numbers and Numerals.- 1.2.2 Types of Numbers.- 1.2.3 Positional Number Systems.- 1.3 Sampling and Reconstruction of Signals.- 1.3.1 Scalar Quantization.- 1.3.2 Quantization Noise.- 1.3.3 Signal-To-Noise Ratio.- 1.3.4 Transmission Rate.- 1.3.5 Nonuniform Quantizer.- 1.3.6 Companding.- 1.4 Data Representations.- 1.4.1 Fixed-Point Number Representations.- 1.4.2 Sign-Magnitude Format.- 1.4.3 One's-Complement Format.- 1.4.4 Two's-Complement Format.- 1.5 Fix-Point DSP's.- 1.6 Fixed-Point Representations Based on Radix-Point.- 1.7 Dynamic Range.- 1.8 Precision.- 1.9 Background Information.- 1.10 Exercises.- 2 Signal Processing Background.- 2.1 Basic Concepts.- 2.2 Signals and Information.- 2.3 Signal Processing.- ix.- x Contents.- 2.4 Discrete Signal Representations.- 2.5 Delta and Impulse Function.- 2.6 Parseval's Theorem.- 2.7 Gibbs Phenomenon.- 2.8 Wold Decomposition.- 2.9 State Space Signal Processing.- 2.10 Common Measurements.- 2.10.1 Convolution.- 2.10.2 Correlation.- 2.10.3 Auto Covariance.- 2.10.4 Coherence.- 2.10.5 Power Spectral Density (PSD).- 2.10.6 Estimation and Detection.- 2.10.7 Central Limit Theorem.- 2.10.8 Signal Information Processing Types.- 2.10.9 Machine Learning.- 2.10.10Exercises.- 3 Fundamentals of Signal Transformations.- 3.1 Transformation Methods.- 3.1.1 Laplace Transform.- 3.1.2 Z-Transform .- 3.1.3 Fourier Series.- 3.1.4 Fourier Transform.- 3.1.5 Discrete Fourier Transform and Fast Fourier Transform .- 3.1.6 Zero Padding.- 3.1.7 Overlap-Add and Overlap-Save Convolution.- Algorithms.- 3.1.8 Short Time Fourier Transform (STFT).- 3.1.9 Wavelet Transform.- 3.1.10 Windowing Signal and the DCT Transforms.- 3.2 Analysis and Comparison of Transformations.- 3.3 Background Information.- 3.4 Exercises.- 3.5 References.- 4 Digital Filters.- 4.1 Introduction.- 4.1.1 FIR and IIR Filters.- 4.1.2 Bilinear Transform.-4.2 Windowing for Filtering.- 4.3 Allpass Filters.- 4.4 Lattice Filters.- 4.5 All-Zero Lattice Filter.- 4.6 Lattice Ladder Filters.- Contents xi.- 4.7 Comb Filter.- 4.8 Notch Filter.- 4.9 Background Information.- 4.10 Exercises.- 5 Estimation and Detection.- 5.1 Introduction.- 5.2 Hypothesis Testing.- 5.2.1 Bayesian Hypothesis Testing.- 5.2.2 MAP Hypothesis Testing.- 5.3 Maximum Likelihood (ML) Hypothesis Testing.- 5.4 Standard Analysis Techniques.- 5.4.1 Best Linear Unbiased Estimator (BLUE).- 5.4.2 Maximum Likelihood Estimator (MLE).- 5.4.3 Least Squares Estimator (LSE).- 5.4.4 Linear Minimum Mean Square Error Estimator.- (LMMSE).- 5.5 Exercises.- 6 Adaptive Signal Processing.- 6.1 Introduction.- 6.2 Parametric Signal Modeling.- 6.2.1 Parametric Estimation.- 6.3 Wiener Filtering.- 6.4 Kalman Filter.- 6.4.1 Smoothing.- 6.5 Particle Filter.- 6.6 Fundamentals of Monte Carl.- 6.6.1 Importance Sampling (IS).- 6.7 Non-Parametric Signal Modeling.- 6.8 Non-Parametric Estimation.- 6.8.1 Correlogram.- 6.8.2 Periodogram.- 6.9 Filter Bank Method.- 6.10 Quadrature Mirror Filter Bank (QMF).- 6.11 Background Information.- 6.12 Exercises.- 7 Spectral Analysis.- 7.1 Introduction.- 7.2 Adaptive Spectral Analysis.- 7.3 Multivariate Signal Processing.- 7.3.1 Sub-band Coding and Subspace Analysis.- 7.4 Wavelet Analysis.- 7.5 Adaptive Beam Forming.- xii Contents.- 7.6 Independent Component Analysis (ICA).- 7.7 Principal Component Analysis (PCA).- 7.8 Best Basis Algorithms.- 7.9 Background Information.- 7.10 Exercises.- Part II Machine Learning and Recognition.- 8 General Learning.- 8.1 Introduction to Learning.- 8.2 The Learning Phases.- 8.2.1 Search and Utility.- 8.3 Search.- 8.3.1 General Search Model.- 8.3.2 Preference relations.- 8.3.3 Different learning methods.- 8.3.4 Similarities .- 8.3.5 Learning to Recognize.- 8.3.6 Learning again.- 8.4 Background Information.- 8.5 Exercises.- 9 Signal Processes, Learning, and Recognition.- 9.1 Learning.- 9.2B
| Erscheinungsdatum | 05.10.2022 |
|---|---|
| Zusatzinfo | XLI, 607 p. 300 illus., 237 illus. in color. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Schlagworte | Artificial Intelligence • artificial intelligence (incl. robotics) • Computer Science • Data Mining • data mining and knowledge discovery • Expert systems / knowledge-based systems • feature extraction • Feature Extractions • Hidden Stochastic Model (HSM) • Imaging systems and technology • machine learning • Markov model • Noise • Robotics • Signal, Image and Speech Processing • Signal Processing • Stochastic Processes |
| ISBN-13 | 9783319453712 / 9783319453712 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich