Spaces of Continuous Functions (eBook)
IX, 173 Seiten
Atlantis Press (Verlag)
978-94-6239-201-4 (ISBN)
The space C(X) of all continuous functions on a compact space X carries the structure of a normed vector space, an algebra and a lattice. On the one hand we study the relations between these structures and the topology of X, on the other hand we discuss a number of classical results according to which an algebra or a vector lattice can be represented as a C(X). Various applications of these theorems are given.Some attention is devoted to related theorems, e.g. the Stone Theorem for Boolean algebras and the Riesz Representation Theorem.The book is functional analytic in character. It does not presuppose much knowledge of functional analysis; it contains introductions into subjects such as the weak topology, vector lattices and (some) integration theory.
| Erscheint lt. Verlag | 17.6.2016 |
|---|---|
| Reihe/Serie | Atlantis Studies in Mathematics |
| Zusatzinfo | IX, 173 p. 23 illus. |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Technik | |
| Schlagworte | Compact Hausdorff Spaces • Representation Theorems • Riesz spaces • spaces of continuous functions • Weak Topologies |
| ISBN-10 | 94-6239-201-3 / 9462392013 |
| ISBN-13 | 978-94-6239-201-4 / 9789462392014 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich