Poincare-Andronov-Melnikov Analysis for Non-Smooth Systems (eBook)
260 Seiten
Elsevier Science (Verlag)
978-0-12-804364-6 (ISBN)
Professor Michal Feckan works at the Department of Mathematical Analysis and Numerical Mathematics at the Faculty of Mathematics, Physics, and Informatics at Comenius University. He specializes in nonlinear functional analysis, and dynamic systems and their applications. There is much interest in his contribution to the analysis of solutions of equations with fractional derivatives. Feckan has written several scientific monographs that have been published at top international publishing houses
Poincare-Andronov-Melnikov Analysis for Non-Smooth Systems is devoted to the study of bifurcations of periodic solutions for general n-dimensional discontinuous systems. The authors study these systems under assumptions of transversal intersections with discontinuity-switching boundaries. Furthermore, bifurcations of periodic sliding solutions are studied from sliding periodic solutions of unperturbed discontinuous equations, and bifurcations of forced periodic solutions are also investigated for impact systems from single periodic solutions of unperturbed impact equations. In addition, the book presents studies for weakly coupled discontinuous systems, and also the local asymptotic properties of derived perturbed periodic solutions. The relationship between non-smooth systems and their continuous approximations is investigated as well. Examples of 2-, 3- and 4-dimensional discontinuous ordinary differential equations and impact systems are given to illustrate the theoretical results. The authors use so-called discontinuous Poincare mapping which maps a point to its position after one period of the periodic solution. This approach is rather technical, but it does produce results for general dimensions of spatial variables and parameters as well as the asymptotical results such as stability, instability, and hyperbolicity. - Extends Melnikov analysis of the classic Poincare and Andronov staples, pointing to a general theory for freedom in dimensions of spatial variables and parameters as well as asymptotical results such as stability, instability, and hyperbolicity- Presents a toolbox of critical theoretical techniques for many practical examples and models, including non-smooth dynamical systems- Provides realistic models based on unsolved discontinuous problems from the literature and describes how Poincare-Andronov-Melnikov analysis can be used to solve them- Investigates the relationship between non-smooth systems and their continuous approximations
| Erscheint lt. Verlag | 7.6.2016 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Technik | |
| ISBN-10 | 0-12-804364-4 / 0128043644 |
| ISBN-13 | 978-0-12-804364-6 / 9780128043646 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich