Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
(Hyper)-Graphs Inference through Convex Relaxations and Move Making Algorithms - Nikos Komodakis, M. Pawan Kumar, Nikos Paragios

(Hyper)-Graphs Inference through Convex Relaxations and Move Making Algorithms

Contributions and Applications in Artificial Vision
Buch | Softcover
118 Seiten
2016
now publishers Inc (Verlag)
978-1-68083-138-2 (ISBN)
CHF 126,55 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Computational visual perception seeks to reproduce human vision through the combination of visual sensors, artificial intelligence, and computing. This monograph focuses on the inference component of the problem and in particular discusses in a systematic manner the most commonly used optimization principles in the context of graphical models.
Computational visual perception seeks to reproduce human vision through the combination of visual sensors, artificial intelligence, and computing. To this end, computer vision tasks are often reformulated as mathematical inference problems where the objective is to determine the set of parameters corresponding to the lowest potential of a task-specific objective function. Graphical models have been the most popular formulation in the field over the past two decades where the problem is viewed as a discrete assignment labeling one. Modularity, scalability, and portability are the main strengths of these methods which once combined with efficient inference algorithms they could lead to state of the art results.

This monograph focuses on the inference component of the problem and in particular discusses in a systematic manner the most commonly used optimization principles in the context of graphical models. It looks at inference over low rank models (interactions between variables are constrained to pairs) as well as higher order ones (arbitrary set of variables determine hyper-cliques on which constraints are introduced) and seeks a concise, self-contained presentation of prior art as well as the presentation of the current state of the art methods in the field.

1: Introduction
2: Mathematical background: basic tools for MRF inference
3: Move-making algorithms
4: MRF inference based on the primal-dual schema
5: MRF inference based on dual-decomposition
References

Erscheinungsdatum
Reihe/Serie Foundations and Trends® in Computer Graphics and Vision
Verlagsort Hanover
Sprache englisch
Maße 156 x 234 mm
Gewicht 178 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-68083-138-0 / 1680831380
ISBN-13 978-1-68083-138-2 / 9781680831382
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95