Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

RStudio for R Statistical Computing Cookbook (eBook)

eBook Download: EPUB
2016
246 Seiten
Packt Publishing (Verlag)
978-1-78439-694-7 (ISBN)

Lese- und Medienproben

RStudio for R Statistical Computing Cookbook -  Cirillo Andrea Cirillo
Systemvoraussetzungen
39,59 inkl. MwSt
(CHF 38,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Over 50 practical and useful recipes to help you perform data analysis with R by unleashing every native RStudio feature

About This Book

  • 54 useful and practical tasks to improve working systems
  • Includes optimizing performance and reliability or uptime, reporting, system management tools, interfacing to standard data ports, and so on
  • Offers 10-15 real-life, practical improvements for each user type

Who This Book Is For

This book is targeted at R statisticians, data scientists, and R programmers. Readers with R experience who are looking to take the plunge into statistical computing will find this Cookbook particularly indispensable.

What You Will Learn

  • Familiarize yourself with the latest advanced R console features
  • Create advanced and interactive graphics
  • Manage your R project and project files effectively
  • Perform reproducible statistical analyses in your R projects
  • Use RStudio to design predictive models for a specific domain-based application
  • Use RStudio to effectively communicate your analyses results and even publish them to a blog
  • Put yourself on the frontiers of data science and data monetization in R with all the tools that are needed to effectively communicate your results and even transform your work into a data product

In Detail

The requirement of handling complex datasets, performing unprecedented statistical analysis, and providing real-time visualizations to businesses has concerned statisticians and analysts across the globe. RStudio is a useful and powerful tool for statistical analysis that harnesses the power of R for computational statistics, visualization, and data science, in an integrated development environment.

This book is a collection of recipes that will help you learn and understand RStudio features so that you can effectively perform statistical analysis and reporting, code editing, and R development. The first few chapters will teach you how to set up your own data analysis project in RStudio, acquire data from different data sources, and manipulate and clean data for analysis and visualization purposes. You'll get hands-on with various data visualization methods using ggplot2, and you will create interactive and multidimensional visualizations with D3.js. Additional recipes will help you optimize your code; implement various statistical models to manage large datasets; perform text analysis and predictive analysis; and master time series analysis, machine learning, forecasting; and so on. In the final few chapters, you'll learn how to create reports from your analytical application with the full range of static and dynamic reporting tools that are available in RStudio so that you can effectively communicate results and even transform them into interactive web applications.

Style and approach

RStudio is an open source Integrated Development Environment (IDE) for the R platform. The R programming language is used for statistical computing and graphics, which RStudio facilitates and enhances through its integrated environment.

This Cookbook will help you learn to write better R code using the advanced features of the R programming language using RStudio. Readers will learn advanced R techniques to compute the language and control object evaluation within R functions. Some of the contents are:

  • Accessing an API with R
  • Substituting missing values by interpolation
  • Performing data filtering activities
  • R Statistical implementation for Geospatial data
  • Developing shiny add-ins to expand RStudio functionalities
  • Using GitHub with RStudio
  • Modelling a recommendation engine with R
  • Using R Markdown for static and dynamic reporting
  • Curating a blog through RStudio
  • Advanced statistical modelling with R and RStudio

Over 50 practical and useful recipes to help you perform data analysis with R by unleashing every native RStudio featureAbout This Book54 useful and practical tasks to improve working systemsIncludes optimizing performance and reliability or uptime, reporting, system management tools, interfacing to standard data ports, and so onOffers 10-15 real-life, practical improvements for each user typeWho This Book Is ForThis book is targeted at R statisticians, data scientists, and R programmers. Readers with R experience who are looking to take the plunge into statistical computing will find this Cookbook particularly indispensable.What You Will LearnFamiliarize yourself with the latest advanced R console featuresCreate advanced and interactive graphicsManage your R project and project files effectivelyPerform reproducible statistical analyses in your R projectsUse RStudio to design predictive models for a specific domain-based applicationUse RStudio to effectively communicate your analyses results and even publish them to a blogPut yourself on the frontiers of data science and data monetization in R with all the tools that are needed to effectively communicate your results and even transform your work into a data productIn DetailThe requirement of handling complex datasets, performing unprecedented statistical analysis, and providing real-time visualizations to businesses has concerned statisticians and analysts across the globe. RStudio is a useful and powerful tool for statistical analysis that harnesses the power of R for computational statistics, visualization, and data science, in an integrated development environment.This book is a collection of recipes that will help you learn and understand RStudio features so that you can effectively perform statistical analysis and reporting, code editing, and R development. The first few chapters will teach you how to set up your own data analysis project in RStudio, acquire data from different data sources, and manipulate and clean data for analysis and visualization purposes. You'll get hands-on with various data visualization methods using ggplot2, and you will create interactive and multidimensional visualizations with D3.js. Additional recipes will help you optimize your code; implement various statistical models to manage large datasets; perform text analysis and predictive analysis; and master time series analysis, machine learning, forecasting; and so on. In the final few chapters, you'll learn how to create reports from your analytical application with the full range of static and dynamic reporting tools that are available in RStudio so that you can effectively communicate results and even transform them into interactive web applications.Style and approachRStudio is an open source Integrated Development Environment (IDE) for the R platform. The R programming language is used for statistical computing and graphics, which RStudio facilitates and enhances through its integrated environment.This Cookbook will help you learn to write better R code using the advanced features of the R programming language using RStudio. Readers will learn advanced R techniques to compute the language and control object evaluation within R functions. Some of the contents are:Accessing an API with RSubstituting missing values by interpolationPerforming data filtering activitiesR Statistical implementation for Geospatial dataDeveloping shiny add-ins to expand RStudio functionalitiesUsing GitHub with RStudioModelling a recommendation engine with RUsing R Markdown for static and dynamic reportingCurating a blog through RStudioAdvanced statistical modelling with R and RStudio
Erscheint lt. Verlag 29.4.2016
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 1-78439-694-X / 178439694X
ISBN-13 978-1-78439-694-7 / 9781784396947
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95