Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Machine Learning in Java (eBook)

(Autor)

eBook Download: EPUB
2016
258 Seiten
Packt Publishing (Verlag)
978-1-78439-036-5 (ISBN)

Lese- und Medienproben

Machine Learning in Java - Bostjan Kaluza
Systemvoraussetzungen
43,19 inkl. MwSt
(CHF 42,20)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Design, build, and deploy your own machine learning applications by leveraging key Java machine learning libraries

About This Book

  • Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries
  • Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications
  • Packed with practical advice and tips to help you get to grips with applied machine learning

Who This Book Is For

If you want to learn how to use Java's machine learning libraries to gain insight from your data, this book is for you. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. You should be familiar with Java programming and data mining concepts to make the most of this book, but no prior experience with data mining packages is necessary.

What You Will Learn

  • Understand the basic steps of applied machine learning and how to differentiate among various machine learning approaches
  • Discover key Java machine learning libraries, what each library brings to the table, and what kind of problems each are able to solve
  • Learn how to implement classification, regression, and clustering
  • Develop a sustainable strategy for customer retention by predicting likely churn candidates
  • Build a scalable recommendation engine with Apache Mahout
  • Apply machine learning to fraud, anomaly, and outlier detection
  • Experiment with deep learning concepts, algorithms, and the toolbox for deep learning
  • Write your own activity recognition model for eHealth applications using mobile sensors

In Detail

As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.

Machine Learning in Java will provide you with the techniques and tools you need to quickly gain insight from complex data. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering.

Moving on, you will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text analysis. By the end of the book, you will explore related web resources and technologies that will help you take your learning to the next level.

By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data.

Style and approach

This is a practical tutorial that uses hands-on examples to step through some real-world applications of machine learning. Without shying away from the technical details, you will explore machine learning with Java libraries using clear and practical examples. You will explore how to prepare data for analysis, choose a machine learning method, and measure the success of the process.


Design, build, and deploy your own machine learning applications by leveraging key Java machine learning librariesAbout This BookDevelop a sound strategy to solve predictive modelling problems using the most popular machine learning Java librariesExplore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applicationsPacked with practical advice and tips to help you get to grips with applied machine learningWho This Book Is ForIf you want to learn how to use Java's machine learning libraries to gain insight from your data, this book is for you. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. You should be familiar with Java programming and data mining concepts to make the most of this book, but no prior experience with data mining packages is necessary.What You Will LearnUnderstand the basic steps of applied machine learning and how to differentiate among various machine learning approachesDiscover key Java machine learning libraries, what each library brings to the table, and what kind of problems each are able to solveLearn how to implement classification, regression, and clusteringDevelop a sustainable strategy for customer retention by predicting likely churn candidatesBuild a scalable recommendation engine with Apache MahoutApply machine learning to fraud, anomaly, and outlier detectionExperiment with deep learning concepts, algorithms, and the toolbox for deep learningWrite your own activity recognition model for eHealth applications using mobile sensorsIn DetailAs the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.Machine Learning in Java will provide you with the techniques and tools you need to quickly gain insight from complex data. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering.Moving on, you will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text analysis. By the end of the book, you will explore related web resources and technologies that will help you take your learning to the next level.By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data.Style and approachThis is a practical tutorial that uses hands-on examples to step through some real-world applications of machine learning. Without shying away from the technical details, you will explore machine learning with Java libraries using clear and practical examples. You will explore how to prepare data for analysis, choose a machine learning method, and measure the success of the process.
Erscheint lt. Verlag 29.4.2016
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 1-78439-036-4 / 1784390364
ISBN-13 978-1-78439-036-5 / 9781784390365
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95