Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Theoretic Foundation of Predictive Data Analytics

(Autor)

Buch | Softcover
256 Seiten
2017
Morgan Kaufmann Publishers In (Verlag)
978-0-12-803655-6 (ISBN)
CHF 123,85 inkl. MwSt
  • Titel wird leider nicht erscheinen
  • Artikel merken
Theoretic Foundation of Predictive Data Analytics presents the latest in data science, an area that is penetrating into virtually every discipline of science, engineering, and medicine, and is a fast evolving field. Practitioners, researchers, and graduate students often have difficulty in understanding the foundation of data science.

In order to have a deep understanding of data science, a strong understanding of statistical analysis and machine learning is a must. This book introduces the commonly used statistical principles behind many machine learning and data mining algorithms, the connections of those principles, and the connections of those principles to commonly utilized data analytic algorithms.

Professor Jun Huan, Ph.D. is a Professor in the Department of Electrical Engineering and Computer Science at the University of Kansas. He directs the Bioinformatics and Computational Life Sciences Laboratory at KU Information and Telecommunication Technology Center (ITTC). Dr. Huan works on data science, machine learning, data mining, big data, and interdisciplinary topics including bioinformatics. Dr. Huan serves the editorial board of several international journals including the Springer Journal of Big Data, Elsevier Journal of Big Data Research, and the International Journal of Data Mining and Bioinformatics. He regularly serves on the program committees of top-tier international conferences on machine learning, data mining, big data, and bioinformatics

1. Probability Theory and LLN 2. Maximum Likelihood Estimation 3. Linear Regression 4. Ridge Regression 5. Linear Classification 6. Akaike Information Criterion (AIC) 7. Support Vector Machines 8. Statistical Learning Theory 9. Statistical Decision Theory 10. Exchangeability 11. Bayesian Linear Regression 12. Gaussian Process 13. Ensemble learning 14. Optimization

A Real Number and Vector Space B Vector Space C Advanced Probability and SLLN

Erscheinungsdatum
Verlagsort San Francisco
Sprache englisch
Maße 191 x 235 mm
Themenwelt Mathematik / Informatik Informatik Software Entwicklung
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 0-12-803655-9 / 0128036559
ISBN-13 978-0-12-803655-6 / 9780128036556
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 46,15