Complete Second Order Linear Differential Equations in Hilbert Spaces
Springer Basel (Verlag)
978-3-7643-5377-3 (ISBN)
I. Well-posedness of boundary-value problems.- to Part I.- 1. Joint spectrum of commuting normal operators and its position. Estimates for roots of second order polynomials. Definition of well-posedness of boundary-value problems.- 2. Well-posedness of boundary-value problems for equation (1) in the case of commuting self-adjoint A and B.- 3. The Cauchy problem.- 4. Boundary-value problems on a finite segment.- II. Initial data of solutions.- to Part II.- 5. Boundary behaviour of an integral transform R(t) as t ? 0 depending on the sub-integral measure.- 6. Initial data of solutions.- III. Extension, stability, and stabilization of weak solutions.- to Part III.- 7. The general form of weak solutions.- 8. Fatou-Riesz property.- 9. Extension of weak solutions.- 10. Stability and stabilization of weak solutions.- IV. Boundary-value problems on a half-line.- to Part IV.- 11. The Dirichlet problem on a half-line.- 12. The Neumann problem on a half-line.- Commentaries on the literature.- List of symbols.
| Erscheint lt. Verlag | 18.2.1997 |
|---|---|
| Reihe/Serie | Operator Theory: Advances and Applications |
| Zusatzinfo | XII, 220 p. |
| Verlagsort | Basel |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 508 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
| Mathematik / Informatik ► Mathematik ► Analysis | |
| Schlagworte | Calculus • Differenzialgleichungen • Equation • Finite • Function • Functional Analysis • Hardcover, Softcover / Mathematik/Allgemeines, Lexika • HC/Mathematik/Analysis • Hilbert-Raum • Hilbert-Räume • hilbert space • integral transform • Lineare Differentialgleichung • Mathematik • Partial differential equations • Proof • Theorem |
| ISBN-10 | 3-7643-5377-5 / 3764353775 |
| ISBN-13 | 978-3-7643-5377-3 / 9783764353773 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich