Commutative Harmonic Analysis I
General Survey. Classical Aspects
Seiten
1991
Springer Berlin (Verlag)
978-3-540-18180-4 (ISBN)
Springer Berlin (Verlag)
978-3-540-18180-4 (ISBN)
This is the first volume in the subseries Commutative Harmonic Analysis of the EMS. It is intended for anyone who wants to get acquainted with the discipline. The first article is a large introduction, also serving as a guide to the rest of the volume. Starting from Fourier analysis of periodic function, then going through the Fourier transform and distributions, the exposition leads the reader to the group theoretic point of view. Numerous examples illustrate the connections to differential and integral equations, approximation theory, number theory, probability theory and physics. The article also contains a brief historical essay on the development of Fourier analysis. The second article focuses on some of the classical problems of Fourier series; it's a "mini-Zygmund" for the beginner. In particular, the convergence and summability of Fourier series, translation invariant operators and theorems on Fourier coefficients are given special attention.
The third article is the most modern of the three, concentrating on the theory of singular integral operators. The simplest such operator, the Hilbert transform, is covered in detail. There is also a thorough introduction to Calderon-Zygmund theory.
Dieser Band ist der Anfang der EMS-'Unterreihe' Commutative Harmonic Analysis, in der bisher vier Bände geplant sind. Ein historischer Überblick über Fourieranalysis ist ebenfalls eingeschlossen. Fourieranalysis findet in vielen anderen Fachgebieten der Mathematik Anwendung.
The third article is the most modern of the three, concentrating on the theory of singular integral operators. The simplest such operator, the Hilbert transform, is covered in detail. There is also a thorough introduction to Calderon-Zygmund theory.
Dieser Band ist der Anfang der EMS-'Unterreihe' Commutative Harmonic Analysis, in der bisher vier Bände geplant sind. Ein historischer Überblick über Fourieranalysis ist ebenfalls eingeschlossen. Fourieranalysis findet in vielen anderen Fachgebieten der Mathematik Anwendung.
I. Methods and Structure of Commutative Harmonic Analysis.- II. Classical Themes of Fourier Analysis.- III. Methods of the Theory of Singular Integrals: Hilbert Transform and Calderón-Zygmund Theory.- Author Index.
| Erscheint lt. Verlag | 15.8.1991 |
|---|---|
| Reihe/Serie | Encyclopaedia of Mathematical Sciences |
| Co-Autor | E.M. Dyn'kin, V.P. Khavin, S.V. Kislyakov |
| Übersetzer | D. Khavinson, S.V. Kislyakov |
| Zusatzinfo | X, 270 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 586 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Schlagworte | Analysis; Handbuch/Lehrbuch • Caldern-Zygmund Theory • Calderon-Zygmund Theorie • commutative harmonic analysis • Distribution • fourier analysis • Fourier transform • Harmonic Analysis • Hilbert transform • Hilbert Transformationen • Kommutative Harmonische Analysis • Singuläre Integrale • Singular integral • Singular Integrals |
| ISBN-10 | 3-540-18180-6 / 3540181806 |
| ISBN-13 | 978-3-540-18180-4 / 9783540181804 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90