Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nil Bohr-Sets and Almost Automorphy of Higher Order - Wen Huang, Song Shao, Xiangdong Ye

Nil Bohr-Sets and Almost Automorphy of Higher Order

Buch | Softcover
86 Seiten
2016
American Mathematical Society (Verlag)
978-1-4704-1872-4 (ISBN)
CHF 124,65 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Two closely related topics, higher order Bohr sets and higher order almost automorphy, are investigated in this paper. In the first part, the problem which can be viewed as the higher order version of an old question concerning Bohr sets is studied. In the second part, the notion of $d$-step almost automorphic systems with $d/in/mathbb{N}/cup/{/infty/}$ is introduced and investigated.
Two closely related topics, higher order Bohr sets and higher order almost automorphy, are investigated in this paper. Both of them are related to nilsystems. In the first part, the problem which can be viewed as the higher order version of an old question concerning Bohr sets is studied: for any $d/in /mathbb{N}$ does the collection of $/{n/in /mathbb{Z}: S/cap (S-n)/cap/ldots/cap (S-dn)/neq /emptyset/}$ with $S$ syndetic coincide with that of Nil$_d$ Bohr$_0$-sets? In the second part, the notion of $d$-step almost automorphic systems with $d/in/mathbb{N}/cup/{/infty/}$ is introduced and investigated, which is the generalization of the classical almost automorphic ones.

Wen Huang, Song Shao, and Xiangdong Ye, University of Science and Technology of China, Hefei, Anhui, China.

Introduction
Preliminaries
Nilsystems
Generalized polynomials
Nil Bohr$_0$-sets and generalized polynomials: Proof of Theorem B
Generalized polynomials and recurrence sets: Proof of Theorem C
Recurrence sets and regionally proximal relation of order $d$ $d$-step almost automorpy and recurrence sets
Appendix A
Bibliography
Index

Erscheinungsdatum
Reihe/Serie Memoirs of the American Mathematical Society
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 152 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 1-4704-1872-X / 147041872X
ISBN-13 978-1-4704-1872-4 / 9781470418724
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95