Classification of E_0-Semigroups by Product Systems
Seiten
2016
American Mathematical Society (Verlag)
978-1-4704-1738-3 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-1738-3 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
In these notes the author presents a complete theory of classification of E_0-semigroups by product systems of correspondences. As an application of his theory, he answers the fundamental question if a Markov semigroup admits a dilation by a cocycle perturbations of noise: It does if and only if it is spatial.
Michael Skeide, Universita degli Studi del Molise, Campobaso, Italy.
Introduction
Morita equivalence and representations
Stable Morita equivalence for Hilbert modules
Ternary isomorphisms
Cocycle conjugacy of $E_0$-semigroups $E_0$-semigroups, product systems, and unitary cocycles
Conjugate $E_0$-semigroups and Morita equivalent product systems
Stable unitary cocycle (inner) conjugacy of $E_0$-semigroups
About continuity
Hudson-Parthasarathy dilations of spatial Markov semigroups
Von Neumann case: Algebraic classification
Von Neumann case: Topological classification
Von Neumann case: Spatial Markov semigroups
Appendix A: Strong type I product systems
Appendix B: $E_0$-semigroups and representations for strongly continuous product systems
References
| Erscheinungsdatum | 02.04.2016 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 207 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 1-4704-1738-3 / 1470417383 |
| ISBN-13 | 978-1-4704-1738-3 / 9781470417383 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90