Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Partially Observed Markov Decision Processes

From Filtering to Controlled Sensing
Buch | Hardcover
488 Seiten
2016
Cambridge University Press (Verlag)
978-1-107-13460-7 (ISBN)
CHF 149,95 inkl. MwSt
  • Titel erscheint in neuer Auflage
  • Artikel merken
This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.
Covering formulation, algorithms, and structural results, and linking theory to real-world applications in controlled sensing (including social learning, adaptive radars and sequential detection), this book focuses on the conceptual foundations of partially observed Markov decision processes (POMDPs). It emphasizes structural results in stochastic dynamic programming, enabling graduate students and researchers in engineering, operations research, and economics to understand the underlying unifying themes without getting weighed down by mathematical technicalities. Bringing together research from across the literature, the book provides an introduction to nonlinear filtering followed by a systematic development of stochastic dynamic programming, lattice programming and reinforcement learning for POMDPs. Questions addressed in the book include: when does a POMDP have a threshold optimal policy? When are myopic policies optimal? How do local and global decision makers interact in adaptive decision making in multi-agent social learning where there is herding and data incest? And how can sophisticated radars and sensors adapt their sensing in real time?

Vikram Krishnamurthy is a Professor and Canada Research Chair in Statistical Signal Processing at the University of British Columbia, Vancouver. His research contributions focus on nonlinear filtering, stochastic approximation algorithms and POMDPs. Dr Krishnamurthy is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) and served as a distinguished lecturer for the IEEE Signal Processing Society. In 2013, he received an honorary doctorate from KTH, Royal Institute of Technology, Sweden.

Preface; 1. Introduction; Part I. Stochastic Models and Bayesian Filtering: 2. Stochastic state-space models; 3. Optimal filtering; 4. Algorithms for maximum likelihood parameter estimation; 5. Multi-agent sensing: social learning and data incest; Part II. Partially Observed Markov Decision Processes. Models and Algorithms: 6. Fully observed Markov decision processes; 7. Partially observed Markov decision processes (POMDPs); 8. POMDPs in controlled sensing and sensor scheduling; Part III. Partially Observed Markov Decision Processes: 9. Structural results for Markov decision processes; 10. Structural results for optimal filters; 11. Monotonicity of value function for POMPDs; 12. Structural results for stopping time POMPDs; 13. Stopping time POMPDs for quickest change detection; 14. Myopic policy bounds for POMPDs and sensitivity to model parameters; Part IV. Stochastic Approximation and Reinforcement Learning: 15. Stochastic optimization and gradient estimation; 16. Reinforcement learning; 17. Stochastic approximation algorithms: examples; 18. Summary of algorithms for solving POMPDs; Appendix A. Short primer on stochastic simulation; Appendix B. Continuous-time HMM filters; Appendix C. Markov processes; Appendix D. Some limit theorems; Bibliography; Index.

Erscheinungsdatum
Zusatzinfo 5 Tables, black and white; 47 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 180 x 254 mm
Gewicht 1100 g
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
ISBN-10 1-107-13460-9 / 1107134609
ISBN-13 978-1-107-13460-7 / 9781107134607
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich