Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications - Chiara Brombin, Luigi Salmaso, Lara Fontanella, Luigi Ippoliti, Caterina Fusilli

Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications

Buch | Softcover
X, 115 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-26310-6 (ISBN)
CHF 82,35 inkl. MwSt

This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests. The models are simple to understand and interpret and provide a useful tool to describe the global dynamics of the landmark configurations. However, because of the non-Euclidean nature of shape spaces, distributions in shape spaces are not straightforward to obtain.

The book explores the use of the Gaussian distribution in the configuration space, with similarity transformations integrated out. Specifically, it works with the offset-normal shape distribution as a probability model for statistical inference on a sample of a temporal sequence of landmark configurations. This enables inference for Gaussian processes from configurations onto the shape space.

The book is divided in two parts, with the first three chapters covering material on the offset-normal shape distribution, and the remaining chapters covering the theory of NonParametric Combination (NPC) tests. The chapters offer a collection of applications which are bound together by the theme of this book.

They refer to the analysis of data from the FG-NET (Face and Gesture Recognition Research Network) database with facial expressions. For these data, it may be desirable to provide a description of the dynamics of the expressions, or testing whether there is a difference between the dynamics of two facial expressions or testing which of the landmarks are more informative in explaining the pattern of an expression.

Chiara Brombin is Assistant Professor in Statistics at the Faculty of Psychology (University Vita-Salute San Raffaele, Milano) and national coordinator of the research project FIRB 2012 (RBFR12VHR7) "Interpreting emotions: a computational tool integrating facial expressions and biosignals based on shape analysis and Bayesian networks". Her research interests focus on applied statistics and include nonparametric permutation tests, statistical shape analysis, multivariate statistics, linear mixed-effect models, joint models for longitudinal and time-to-event data. Luigi Salmaso is Full Professor of Statistics at the Department of Management and Engineering at University of Padova. His research interests include biostatistics, statistical methods for marketing research, design of experiments, nonparametric statistics and agricultural statistics. Specific topics of interests include permutation tests, resampling techniques and ranking and selection methods. Luigi Ippoliti is an Associate Professor in Statistics at the University "G. d'Annunzio"of Chieti Pescara, Italy. His research activity is mainly focused on the analysis of multivariate processes with temporal, spatial and spatio-temporal structures with interests in economic, environmental and Neuro-Physiological applications. Specific topics of interests include hierarchical spatio-temporal models, image processing, functional data analysis and dynamic shape analysis.

Part I Offset Normal Distribution for Dynamic Shapes.- Basic Concepts and Definitions.- Shape Inference and the Offset-Normal Distribution.- Dynamic Shape Analysis Through the Offset-Normal Distribution.- Part II Combination-Based Permutation Tests for Shape Analysis.- Parametric and Non-Parametric Testing of Mean Shapes.- Applications of NPC Methodology.- Shape Inference and the Offset-Normal Distribution.                                                                                               

                                                                                                           

Erscheinungsdatum
Reihe/Serie SpringerBriefs in Statistics
Zusatzinfo X, 115 p. 48 illus., 27 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Computational Mathematics and Numerical Analysis • Dynamic Shapes • Expectation Maximization Algorithm • mathematics and statistics • NonParametric Combination (NPC) • Nonparametric Methodology • Offset-normal Shape Distribution • Parametric Methodology • Probability and Statistics in Computer Science • shape analysis • shape inference • statistical shape analysis • Statistical Theory and Methods
ISBN-10 3-319-26310-2 / 3319263102
ISBN-13 978-3-319-26310-6 / 9783319263106
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …

von Dirk Hardy; Annette Schellenberg; Achim Stiefel

Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 37,90