Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Die Eignung Neuronaler Netze für die Mining-Funktionen Clustern und Vorhersage (eBook)

(Autor)

eBook Download: PDF
2015
92 Seiten
Diplomica Verlag
9783958504868 (ISBN)

Lese- und Medienproben

Die Eignung Neuronaler Netze für die Mining-Funktionen Clustern und Vorhersage - Thomas Zabel
Systemvoraussetzungen
34,99 inkl. MwSt
(CHF 34,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Schnelles Wachstum gespeicherter Datenmengen in der Informationstechnik führte in den vergangenen Jahren zu einem steigenden Interesse an Methoden, die in der Lage sind, nützliches Wissen automatisch aus großen Datenbeständen zu filtern. Mit dem Ziel, solche Methoden zu entwickeln, hat sich inzwischen unter Synonymen wie „Data Mining“, „Knowledge Discovery in Databases“ (KDD) oder „Datenmustererkennung“ eine neue Forschungsrichtung etabliert, die bislang isoliert arbeitende Einzeldisziplinen vereinigt. Zu nennen sind die Disziplinen Statistik, Datenbank- und Expertensystemforschung, automatischer Wissenserwerb, Maschinelles Lernen und Fuzzy-Datenanalyse.
Die Literatur über „Data Mining“ dokumentiert zahlreiche Versuche, aus verschiedenartigsten Datenbeständen neue Erkenntnisse zu gewinnen. Hierbei werden unterschiedliche Algorithmen des „Data Mining“ beschrieben. Ziel hierbei ist es, die Eignung Neuronaler Netze, oft auch als Künstliche Neuronale Netze bezeichnet, als Mining-Algorithmen für die Mining-Funktionen Clustern und Vorhersage zu untersuchen. Dabei begrenzt sich die Sichtweise auf Backpropagation- und Kohonen-Netze, da diese Neuronalen Netze für Clustern und Vorhersagen prädestiniert sind.
Erscheint lt. Verlag 30.5.2015
Zusatzinfo 19 Abb.
Sprache deutsch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Schlagworte backpropagation • Data Mining • Datenmustererkennung • Knowledge Discovery in Databases • Kohonen-Netz • Mining-Algorithmen
ISBN-13 9783958504868 / 9783958504868
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Auto der Zukunft – Vernetzt und autonom fahren

von Roman Mildner; Thomas Ziller; Franco Baiocchi

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
CHF 37,10