Strong Boundary Values, Analytic Functionals and Nonlinear Paley-Wiener Theory
2002
American Mathematical Society (Verlag)
978-0-8218-2712-3 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-2712-3 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Introduces a notion of boundary values for functions along real analytic boundaries, without any restriction on the growth of the functions. This titleoffers a definition that does not depend on having the functions satisfy a differential equation, but it covers the classical case of non-characteristic boundaries.
We introduce a notion of boundary values for functions along real analytic boundaries, without any restriction on the growth of the functions. Our definition does not depend on having the functions satisfy a differential equation, but it covers the classical case of non-characteristic boundaries. These boundary values are analytic functionals or, in the local setting, hyperfunctions. We give a characterization of nonconvex carriers of analytic functionals, in the spirit of the Paley-Wiener-Martineau theory for convex carriers. Our treatment gives a new approach even to the classical Paley-Wiener theorem. The result applies to the study of analytic families of analytic functionals. The paper is mostly self contained. It starts with an exposition of the basic theory of analytic functionals and hyperfunctions, always using the most direct arguments that we have found. Detailed examples are discussed.
We introduce a notion of boundary values for functions along real analytic boundaries, without any restriction on the growth of the functions. Our definition does not depend on having the functions satisfy a differential equation, but it covers the classical case of non-characteristic boundaries. These boundary values are analytic functionals or, in the local setting, hyperfunctions. We give a characterization of nonconvex carriers of analytic functionals, in the spirit of the Paley-Wiener-Martineau theory for convex carriers. Our treatment gives a new approach even to the classical Paley-Wiener theorem. The result applies to the study of analytic families of analytic functionals. The paper is mostly self contained. It starts with an exposition of the basic theory of analytic functionals and hyperfunctions, always using the most direct arguments that we have found. Detailed examples are discussed.
Introduction Preliminaries on analytic functionals and hyperfunctions Appendix on good compact sets Analytic functionals as boundary values Nonlinear Paley-Wiener theory Strong boundary values Strong boundary values for the solutions of certain partial differential equations Comparison with other notions of boundary values Boundary values via cousin decompositions The Schwarz reflection principle References Index of notions.
| Erscheint lt. Verlag | 1.1.2002 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Zusatzinfo | references, index |
| Verlagsort | Providence |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 0-8218-2712-X / 082182712X |
| ISBN-13 | 978-0-8218-2712-3 / 9780821827123 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90
Eine anwendungsorientierte Einführung
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95