Stochastic Integration with Jumps
Seiten
2002
Cambridge University Press (Verlag)
978-0-521-81129-3 (ISBN)
Cambridge University Press (Verlag)
978-0-521-81129-3 (ISBN)
The complete theory of stochastic differential equations driven by jumps, their stability, and numerical approximation theories.
Stochastic processes with jumps and random measures are importance as drivers in applications like financial mathematics and signal processing. This 2002 text develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some novel predictable controlling devices, the author furnishes the theory of stochastic differential equations driven by them, as well as their stability and numerical approximation theories. Highlights feature DCT and Egoroff's Theorem, as well as comprehensive analogs results from ordinary integration theory, for instance previsible envelopes and an algorithm computing stochastic integrals of càglàd integrands pathwise. Full proofs are given for all results, and motivation is stressed throughout. A large appendix contains most of the analysis that readers will need as a prerequisite. This will be an invaluable reference for graduate students and researchers in mathematics, physics, electrical engineering and finance who need to use stochastic differential equations.
Stochastic processes with jumps and random measures are importance as drivers in applications like financial mathematics and signal processing. This 2002 text develops stochastic integration theory for both integrators (semimartingales) and random measures from a common point of view. Using some novel predictable controlling devices, the author furnishes the theory of stochastic differential equations driven by them, as well as their stability and numerical approximation theories. Highlights feature DCT and Egoroff's Theorem, as well as comprehensive analogs results from ordinary integration theory, for instance previsible envelopes and an algorithm computing stochastic integrals of càglàd integrands pathwise. Full proofs are given for all results, and motivation is stressed throughout. A large appendix contains most of the analysis that readers will need as a prerequisite. This will be an invaluable reference for graduate students and researchers in mathematics, physics, electrical engineering and finance who need to use stochastic differential equations.
Preface; 1. Introduction; 2. Integrators and martingales; 3. Extension of the integral; 4. Control of integral and integrator; 5. Stochastic differential equations; Appendix A. Complements to topology and measure theory; Appendix B. Answers to selected problems; References; Index.
| Erscheint lt. Verlag | 13.5.2002 |
|---|---|
| Reihe/Serie | Encyclopedia of Mathematics and its Applications |
| Verlagsort | Cambridge |
| Sprache | englisch |
| Maße | 164 x 242 mm |
| Gewicht | 897 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 0-521-81129-5 / 0521811295 |
| ISBN-13 | 978-0-521-81129-3 / 9780521811293 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90