p-Laplace Equation in the Heisenberg Group
Regularity of Solutions
Seiten
2016
|
1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-23789-3 (ISBN)
Springer International Publishing (Verlag)
978-3-319-23789-3 (ISBN)
This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the degenerate one. An introductory chapter presents the basic properties of the Heisenberg group, making the coverage self-contained. The setting is the first Heisenberg group, helping to keep the notation simple and allow the reader to focus on the core of the theory and techniques in the field. Further, detailed proofs make the work accessible to students at the graduate level.
1 Introduction.- 2 The Heisenberg Group.- 3 The p-Laplace Equation.- 4 C1 regularity for the non-degenerate equation.- 5 Lipschitz Regularity.
| Erscheint lt. Verlag | 6.1.2016 |
|---|---|
| Reihe/Serie | SpringerBriefs in Mathematics |
| Zusatzinfo | XIV, 87 p. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Schlagworte | Calculus of Variations and Optimal Control • Heisenberg group • mathematics and statistics • Optimization • Ordinary differential equations • PDE • P-Laplace equation • regularity • subelliptic equations |
| ISBN-10 | 3-319-23789-6 / 3319237896 |
| ISBN-13 | 978-3-319-23789-3 / 9783319237893 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90