Self-Affine Scaling Sets in R2
Seiten
2015
American Mathematical Society (Verlag)
978-1-4704-1091-9 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-1091-9 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
There are many non-integral self-affine tiles which can yield wavelet basis. In this work, the author gives a complete characterization of all one and two dimensional A-dilation scaling sets K such that K is a self-affine tile satisfying BK=(K d1)(K d2) for some d1,d2?R2, where A is a 2×2 integral expansive matrix with detA=2 and B=At
There exist results on the connection between the theory of wavelets and the theory of integral self-affine tiles and in particular, on the construction of wavelet bases using integral self-affine tiles. However, there are many non-integral self-affine tiles which can also yield wavelet basis. In this work, the author gives a complete characterization of all one and two dimensional A -dilation scaling sets K such that K is a self-affine tile satisfying BK=(K d1)⋃(K d2) for some d1,d2∈R2 , where A is a 2×2 integral expansive matrix with ∣detA∣=2 and B=At
There exist results on the connection between the theory of wavelets and the theory of integral self-affine tiles and in particular, on the construction of wavelet bases using integral self-affine tiles. However, there are many non-integral self-affine tiles which can also yield wavelet basis. In this work, the author gives a complete characterization of all one and two dimensional A -dilation scaling sets K such that K is a self-affine tile satisfying BK=(K d1)⋃(K d2) for some d1,d2∈R2 , where A is a 2×2 integral expansive matrix with ∣detA∣=2 and B=At
Xiaoye Fu, The Chinese University of Hong Kong, Shatin, Hong Kong. Jean-Pierre Gabardo, McMaster University, Hamilton, ON, Canada.
Introduction
Preliminary results
A sufficient condition for a self-affine tile to be an MRA scaling set
Characterization of the inclusion K⊂BK
Self-affine scaling sets in R2: the case 0∈D
Self-affine scaling sets in R2: the case D={d1,d2}⊂R2
Conclusion
Bibliography
| Reihe/Serie | Memoirs of the American Mathematical Society |
|---|---|
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 200 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-10 | 1-4704-1091-5 / 1470410915 |
| ISBN-13 | 978-1-4704-1091-9 / 9781470410919 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90
Eine anwendungsorientierte Einführung
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 55,95