COLT '91 (eBook)
371 Seiten
Elsevier Science (Verlag)
9781483299143 (ISBN)
COLT
Front Cover 1
Computational Learning Theory 2
Copyright Page 3
Table of Contens 4
Foreword 10
Invited Talks 12
Learning and Generalization 14
Chapter 1. The Role of Learning in Autonomous Robots 16
Abstract 16
1 INTRODUCTION 16
2 AUTONOMOUS ROBOTS 16
3 LEARNING 18
4 EXAMPLES 19
5 CONCLUSION 20
Acknowledgements 20
References 20
Session I 22
Chapter 2. Tracking Drifting Concepts Using Random Examples 24
Abstract 24
1 Introduction 24
2 Notation and Mathematical Preliminaries 25
3 The Exception Tracking Strategy 26
4 Upper bounds on tolerable amount of drift 28
5 Increasingly unreliable evidence and hypothesis evaluation 29
6 Conclusions 33
7 Acknowledgements 34
References 34
Chapter 3. Investigating the Distribution Assumptions in the Pac Learning Model 35
Abstract 35
1 INTRODUCTION 35
2 LEARNING WITH REASONABLE DISTRIBUTIONS 36
3 LEARNING WHEN THE DISTRIBUTION OF EXAMPLES CHANGES 39
4 CONCLUSIONS 42
Acknowledgement 42
References 43
Chapter 4. Simultaneous Learning of Concepts and Simultaneous Estimation of Probabilities 44
Abstract 44
1 INTRODUCTION 44
2 SIMULTANEOUS LEARNING 45
3 SIMULTANEOUS ESTIMATION 46
4 EMPIRICAL COVERS 47
5 RELATING SIMULTANEOUS LEARNING AND SIMULTANEOUS ESTIMATION 47
6 RELATING SIMULTANEOUS LEARNING AND ESTIMATION TO EMPIRICAL COVERINGS 48
7 A SUFFICIENT CONDITION FOR SIMULTANEOUS LEARNING 50
8 THE DISTRIBUTION-FREE CASE 50
9 CONCLUSION AND OPEN PROBLEMS 51
Acknowledgements 52
APPENDIX 52
REFERENCES 53
Chapter 5. Learning by Smoothing: a morphological approach 54
Abstract 54
1 INTRODUCTION 54
2 FUNDAMENTALS 55
3 PROPERTIES 58
4 COMMENTS 68
Acknowledgements 68
References 68
Session II 70
Chapter 6. Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension 72
Abstract 72
1 Introduction 72
2 Summary of results 74
3 Notational conventions 74
4 Instantaneous information gain and mistake probabilities 75
5 Bounding the mistake probabilities by the information gain 76
6 Bounding the cumulative mistakes by the partition entropy 78
7 Handling incorrect priors 78
8 The average instantaneous information gain is decreasing 79
9 Bayesian learning and the VC dimension: correct priors 80
10 Bayesian learning and the VC dimension: incorrect priors 82
11 Conclusions and future research 83
Acknowledgements 84
References 84
Chapter 7. Calculation of the Learning Curve of Bayes Optimal Classification Algorithm for Learning a Perceptron With Noise 86
Abstract 86
1 Introduction 86
2 Results 87
3 Conclusion 94
Acknowledgements 94
References 94
Chapter 8. Probably Almost Bayes Decisions 99
Abstract 99
1 INTRODUCTION 99
2 BAYES AND PROBABLY ALMOST BAYES DECISIONS 99
3 PAC-ESTIMABLE DISTRIBUTION CLASSES 100
4 INDEPENDENT BOOLEAN FEATURES 103
5 DEPENDENT BOOLEAN FEATURES 103
6 Conclusions 104
References 105
Session IV 106
Chapter 9. A Geometric Approach to Threshold Circuit Complexity 108
Abstract 108
1 Introduction 108
2 Uniqueness 111
3 Generalized Spectrum Techniques 113
4 On The Method of Correlations 116
5 Miscellaneous 119
6 Concluding Remarks 120
Acknowledgments 120
Appendix 120
References 121
Chapter 10. Learning Curves in Large Neural Networks 123
Abstract 123
1 Introduction 123
2 General Theory 125
3 The Annealed Approximation 128
4 Learning of a Perceptron Rule 129
5 Discussion 134
Acknowledgments 136
References 136
Appendix 137
Chapter 11. On the Learnability of Inflnitary Regular Sets 139
Abstract 139
1 Introduction 139
2 Finite Automata and ù-Regular Sets 140
3 Difficulties in Learning InfinitaryRegular Sets 142
4 The Algorithm L 143
5 An Example Run of Lw 146
Acknowledgments 146
References 147
Session V 148
Chapter 12. Learning Monotone DNF with an Incomplete Membership Oracle 150
Abstract 150
1 INTRODUCTION 150
2 PRELIMINARIES 151
3 USING INCOMPLETE MEMBERSHIP QUERIES 152
4 THE MONOTONE DNF LEARNING ALGORITHM 154
5 HANDLING SOME ERRORS 155
6 FUTURE DIRECTIONS 156
Acknowledgements 156
References 156
Chapter 13. Redundant Noisy Attributes, Attribute Errors, and Linear-threshold Learning Using Winnow 158
Abstract 158
1 Introduction 158
2 Winnow 160
3 Adversary Bounds with Attribute Errors 161
4 Noise 162
5 Winnow and Conditionally Independent Attributes 165
Acknowledgements 166
References 167
Chapter 14. Learning in the Presence of Finitely or Infinitely Many Irrelevant Attributes 168
Abstract 168
1 Introduction 168
2 Definitions 170
3 The Models 170
4 Transformation of an attribute-efficient MB algorithm 171
5 Learning Attribute Efficiently in the MBQ and IMBQ models 173
6 Learning Attribute Efficiently with Membership Queries 174
7 Lower Bound 176
Acknowledgements 177
References 177
Chapter 15. On-line Learning with an Oblivious Environment and the Power of Randomization 178
Abstract 178
1 INTRODUCTION 178
2 ERROR-BOUNDS FOR RANDOMIZED ON-LINE LEARNING ALGORITHMS WITH AN OBLIVIOUS ENVIRONMENT 180
3 THE POWER OF RANDOMIZATION FOR ON-LINE LEARNING WITH AN ADAPTIVE ENVIRONMENT 183
4 COMPARISONS WITH OTHER PREDICTION MODELS AND ALGORITHMS 184
Acknowledgements 186
References 186
Session VI 188
Chapter 16. Learning Monotone kµ DNF Formulas on Product Distributions 190
Abstract 190
1 Introduction 190
2 Learning Model 191
3 Influence and Blocking Sets 191
4 Testing for blocking sets 192
5 The algorithm 193
6 Product distributions 193
7 Generalizing this approach 194
References 194
Chapter 17. Learning Probabilistic Read-once Formulas on Product Distributions 195
Abstract 195
1 INTRODUCTION 195
2 PRELIMINARIES 196
3 THE LEARNING ALGORITHM 197
4 CONCLUSION AND OPEN PROBLEMS 208
Acknowledgements 209
References 209
Chapter 18. Learning 2µ Formulas and kµ Decision Trees 210
Abstract 210
1 INTRODUCTION 210
2 DEFINITIONS ANDTERMINOLOGY 211
3 REDUCING DNF FORMULAS TO 3µDNF FORMULAS 212
4 LEARNING 2µDNF FORMULAS 212
5 LEARNING kµ DECISION TREES 217
6 CONCLUSIONS 220
Acknowledgements 220
References 220
Session VIII 222
Chapter 19. Polynomial - Time Learning of Very Simple Grammars from Positive Data 224
Abstract
224
1 Introduction 224
2 Definitions 225
3 Very Simple Grammars and Languages 225
4 Identifying Very Simple Grammars 227
5 An Example Run 235
6 Conclusions 237
Acknowledgements 237
References 238
Chapter 20. Relations Between Probabilistic and Team One-Shot Learners 239
Abstract 239
1 Introduction 239
2 Consequences 241
3 Proof sketches 242
4 Open questions 246
Acknowledgements 246
References 250
Session IX 252
Chapter 21. Approximation and Estimation Bounds for Artificial Neural Networks 254
Abstract 254
1 INTRODUCTION 254
2 TECHNICAL SUMMARY 255
Acknowledgement 260
References 260
Chapter 22. The VC-Dimension vs. the Statistical Capacity for Two Layer Networks with Binary Weights 261
Abstract 261
1 Introduction 261
2 A Relationship between theVC-Dimension and the StatisticalCapacity 261
3 A Lower Bound of the VC-Dimensioll of Two Layer Networks with Binary Weights 263
4 Probability of Error for All Samples Stored 265
5 An Upper Bound 265
6 Conclusion 265
Acknowledgement 266
References 266
Chapter 23. On Learning Binary Weights for Majority Functions 268
Abstract 268
1 INTRODUCTION 268
2 THE SETTING 269
3 HARMONIC UPDATE 271
4 MAJORITY RULE 272
5 DIRECTED DRIFT 273
6 CONCLUSIONS 275
Acknowledgements 276
References 276
Chapter 24. Evaluating the Performance of a Simple Inductive Procedure in the Presence of Overfitting Error 278
Abstract 278
1 Introduction and an Example 278
2 Definitions and Preliminaries 279
3 Empirical Risk Minimization and a Measure of Asymptotic Overfit 280
References 285
Session X 286
Chapter 25. Polynomial Learnability of Probabilistic Concepts with Respect to the Kullback-Leibler Divergence 288
Abstract 288
1 Introduction 288
2 Preliminaries 290
3 Equivalence of Models for Polynomial Learnability of Probabilistic Concepts 291
4 Sample Complexity Bounds 292
5 Learning Convex Combinations of Probabilistic Concepts 294
6 Concluding Remarks 299
Acknowledgements 299
References 299
Chapter 26. A Loss Bound Model for On-Line Stochastic Prediction Strategies 301
Abstract 301
1 Introduction 301
2 A Loss Bound Model 303
3 A New On-Line Stochastic Prediction Strategy Apc 305
4 Upper Bounds on the Cumulative Loss for Apc 305
5 Upper Bounds on the Sample Complexity of e–Prediction by Ape 309
6 Applications of Apc to Some Target Classes 311
Acknowledgements 312
References 313
Chapter 27. On the Complexity of Teaching 314
Abstract 314
1 INTRODUCTION 314
2 THE TEACHING DIMENSION 315
3 RELATED WORK 315
4 COMPARISON TO OTHER DIMENSION MEASURES 316
5 COMPUTING THE TEACHING DIMENSION 318
6 CONCLUSIONS AND OPEN PROBLEMS 323
ACKNOWLEDGEMENTS 323
References 325
Session XI 326
Chapter 28. Improved Learning of AC0 Functions 328
Abstract 328
1 INTRODUCTION 328
2 DEFINITIONS AND NOTATION 328
3 AN ORTHONORMAL BASIS FOR BOOLEAN FUNCTIONS SAMPLED UNDER MUTUALLY INDEPENDENT DISTRIBUTIONS 329
4 THE DROPOFF LEMMA 330
5 DIRECT LEARNING 333
6 INDIRECT LEARNING 334
7 COMPARISON OF APPROACHES 335
8 OPEN QUESTIONS 336
Acknowledgements 336
References 336
Chapter 29. earning Read-Once Formulas over Fields and Extended Bases 337
Abstract 337
1 INTRODUCTION 337
2 DEFINITIONS 338
3 ALGORITHM TO LEARN READ-ONCE FORMULAS OVER 339
4 LEARNING ARITHMETIC READ-ONCE FORMULAS 345
Acknowledgements 347
References 347
Chapter 30. Fast Identification of Geometric Objects with Membership Queries 348
Abstract 348
1 INTRODUCTION 348
2 LEARNING OF A HALFPLANE WITH MEMBERSHIP QUERIES 350
3 FAST AND EXACT IDENTIFICATION OF POLYGONS WITH MEMBERSHIP QUERIES 356
4 LEARNING BOXES AND OTHER "NATURAL" CLASSES OF POLYGONS 362
Acknowledgements 363
References 363
Chapter 31. Bounded degree graph inference from walks 365
Abstract 365
1 INTRODUCTION 365
2 PRELIMINARIES 365
3 INFERENCE OF DEGREE 2 BOUNDED GRAPHS 366
4 INFERENCE OF DEGREE K> 3 BOUNDED GRAPHS
5 CONCLUSIONS 377
References 377
Chapter 32. On the Complexity of Learning Strings and Sequences 378
Abstract 378
1 Introduction 378
2 Preliminaries 378
3 Some Simple Facts about DFA's and Pattern Matching 379
4 The Hardness of Learning a String or Sequence 379
5 Concluding Remarks 381
Acknowledgements 382
References 382
Errata 384
Chapter 33. The Correct Definition of Finite Elasticity: Corrigendum to Identification of Unions 386
Abstract 386
1 CORRIGENDUM 386
References 386
Addendum 388
Chapter 34. When Oracles Do Not Help 390
Abstract 390
1 Introduction 390
2 Notation, Conventions, and Definitions 390
3 Necessary Lemmas 391
4 Overview of the Proof (I) 391
5 Coding A into G 392
6 Satisfying Si (easy part) 392
7 Satisfying Si (hard part) 393
8 Overview of the Proof(II) 393
9 Open Problems 394
10 Acknowledgements 394
References 394
Author Index 396
| Erscheint lt. Verlag | 23.5.2014 |
|---|---|
| Sprache | englisch |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Wirtschaft | |
| ISBN-13 | 9781483299143 / 9781483299143 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich