Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
C4.5 -  J. Ross Quinlan

C4.5 (eBook)

Programs for Machine Learning
eBook Download: PDF
2014 | 1. Auflage
312 Seiten
Elsevier Science (Verlag)
978-0-08-050058-4 (ISBN)
Systemvoraussetzungen
54,02 inkl. MwSt
(CHF 52,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. C4.5 starts with large sets of cases belonging to known classes. The cases, described by any mixture of nominal and numeric properties, are scrutinized for patterns that allow the classes to be reliably discriminated. These patterns are then expressed as models, in the form of decision trees or sets of if-then rules, that can be used to classify new cases, with emphasis on making the models understandable as well as accurate. The system has been applied successfully to tasks involving tens of thousands of cases described by hundreds of properties. The book starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting. Advantages and disadvantages of the C4.5 approach are discussed and illustrated with several case studies. This book should be of interest to developers of classification-based intelligent systems and to students in machine learning and expert systems courses.

J. Ross Quinlan, University of New South Wales
Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. C4.5 starts with large sets of cases belonging to known classes. The cases, described by any mixture of nominal and numeric properties, are scrutinized for patterns that allow the classes to be reliably discriminated. These patterns are then expressed as models, in the form of decision trees or sets of if-then rules, that can be used to classify new cases, with emphasis on making the models understandable as well as accurate. The system has been applied successfully to tasks involving tens of thousands of cases described by hundreds of properties. The book starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting. Advantages and disadvantages of the C4.5 approach are discussed and illustrated with several case studies. This book should be of interest to developers of classification-based intelligent systems and to students in machine learning and expert systems courses.

Front Cover 1
C4.5: Programs for Machine Learning 4
Copyright Page 5
Table of Contents 6
Preface 8
Obtaining the C4.5 Code 10
CHAPTER 1. Introduction 12
1.1 Example: Labor negotiation settlements 14
1.2 Other kinds of classification models 23
1.3 What lies ahead 27
CHAPTER 2. Constructing Decision Trees 28
2.1 Divide and conquer 28
2.2 Evaluating tests 31
2.3 Possible tests considered 35
2.4 Tests on continuous attributes 36
CHAPTER 3. Unknown Attribute Values 38
3.1 Adapting the previous algorithms 39
3.2 Play/Don't Play example again 41
3.3 Recapitulation 43
CHAPTER 4. Pruning Decision Trees 46
4.1 When to simplify? 47
4.2 Error-based pruning 48
4.3 Example: Democrats and Republicans 52
4.4 Estimating error rates for trees 53
CHAPTER 5. From Trees to Rules 56
5.1 Generalizing single rules 58
5.2 Class rulesets 61
5.3 Ranking classes and choosing a default 65
5.4 Summary 66
CHAPTER 6. Windowing 68
6.1 Example: Hypothyroid conditions revisited 69
6.2 Why retain windowing? 69
6.3 Example: The multiplexor 71
CHAPTER 7. Grouping Attribute Values 74
7.1 Finding value groups by merging 75
7.2 Example: Soybean diseases 76
7.3 When to form groups? 77
7.4 Example: The Monk's problems 78
7.5 Uneasy reflections 80
CHAPTER 8. Interacting with Classification Models 82
8.1 Decision tree models 82
8.2 Production rule models 89
8.3 Caveat 91
CHAPTER 9. Guide to Using the System 92
9.1 Files 92
9.2 Running the programs 95
9.3 Conducting experiments 100
9.4 Using options: A credit approval example 102
CHAPTER 10. Limitations 106
10.1 Geometric interpretation 106
10.2 Nonrectangular regions 107
10.3 Poorly delineated regions 109
10.4 Fragmented regions 111
10.5 A more cheerful note 113
CHAPTER 11. Desirable Additions 114
11.1 Continuous classes 114
11.2 Ordered discrete attributes 115
11.3 Structured attributes 115
11.4 Structured induction 116
11.5 Incremental induction 117
11.6 Prospectus 118
Appendix: Program Listings 120
Brief descriptions of the contents of the files 121
Notes on some important data structures 123
File Makefile 126
Alphabetic index of routines 299
References and Bibliography 302
Author Index 308
Subject Index 310

Erscheint lt. Verlag 28.6.2014
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-08-050058-7 / 0080500587
ISBN-13 978-0-08-050058-4 / 9780080500584
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Mit Herz, Kopf & Bot zu deinem Skillset der Zukunft

von Jenny Köppe; Michel Braun

eBook Download (2025)
Lehmanns Media (Verlag)
CHF 16,60