Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Real Analysis (eBook)

A Constructive Approach

(Autor)

eBook Download: EPUB
2014 | 1. Auflage
324 Seiten
John Wiley & Sons (Verlag)
978-1-118-36771-1 (ISBN)

Lese- und Medienproben

Real Analysis - Mark Bridger
Systemvoraussetzungen
53,99 inkl. MwSt
(CHF 52,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A unique approach to analysis that lets you apply mathematicsacross a range of subjects

This innovative text sets forth a thoroughly rigorous modernaccount of the theoretical underpinnings of calculus: continuity,differentiability, and convergence. Using a constructive approach,every proof of every result is direct and ultimatelycomputationally verifiable. In particular, existence is neverestablished by showing that the assumption of non-existence leadsto a contradiction. The ultimate consequence of this method is thatit makes sense--not just to math majors but also to studentsfrom all branches of the sciences.

The text begins with a construction of the real numbersbeginning with the rationals, using interval arithmetic. Thisintroduces readers to the reasoning and proof-writing skillsnecessary for doing and communicating mathematics, and it sets thefoundation for the rest of the text, which includes:
* Early use of the Completeness Theorem to prove a helpful InverseFunction Theorem
* Sequences, limits and series, and the careful derivation offormulas and estimates for important functions
* Emphasis on uniform continuity and its consequences, such asboundedness and the extension of uniformly continuous functionsfrom dense subsets
* Construction of the Riemann integral for functions uniformlycontinuous on an interval, and its extension to improperintegrals
* Differentiation, emphasizing the derivative as a function ratherthan a pointwise limit
* Properties of sequences and series of continuous anddifferentiable functions
* Fourier series and an introduction to more advanced ideas infunctional analysis

Examples throughout the text demonstrate the application of newconcepts. Readers can test their own skills with problems andprojects ranging in difficulty from basic to challenging.

This book is designed mainly for an undergraduate course, andthe author understands that many readers will not go on to moreadvanced pure mathematics. He therefore emphasizes an approach tomathematical analysis that can be applied across a range ofsubjects in engineering and the sciences.

MARK BRIDGER, PHD, is Associate Professor of Mathematics at Northeastern University in Boston, Massachusetts. The author of numerous journal articles, Dr. Bridger's research focuses on constructive analysis, the philosophy of science, and the use of technology in mathematics education.

Preface

Acknowledgements

Introduction

0 Preliminaries

0.1 The Natural Numbers

0.2 The Rationals

1 The Real Numbers and Completeness

1.0 Introduction

1.2 Interval Arithmetic

1.3Fine Families

1.4Definition of the Reals

1.5 Real Number Arithmetic

1.6 Rational Approximations

1.7 Real Intervals and Completeness

1.8 Limits and Limiting Families

Appendix: The Goldbach Number and Trichotomy

2 An Inverse Function Theorem and its Application

2.0 Introduction

2.1 Functions and Inverses

2.2 An Inverse Function Theorem

2.3 The Exponential Function

2.4 Natural Logs and the Euler Number 3

3 Limits, Sequences and Series

3.1 Sequences and Convergence

3.2 Limits of Functions

3.3 Series of Numbers

Appendix I: Some Properties of Exp and Log

Appendix II: Rearrangements of Series

4 Uniform Continuity

4.1 Definitions and elementary Properties

4.2 Limits and Extensions

Appendix I: Are there Non-Continuous Functions?

Appendix II: Continuity of Double-Sided Inverses

Appendix III: The Goldbach Function

5 The Riemann Integral

5.1 Definition and Existence

5.2 Elementary Properties

5.3 Extensions and Improper Integrals

6 Differentiation

6.1 Definitions and Basic Properties

6.2 The Arithmetic of Differentiability

6.3 Two Important Theorems

6.4 Derivative Tools

6.5 Integral Tools

7 Sequences and Series of Functions

7.1 Sequences and Functions

7.2 Integrals and Derivatives o Sequences

7.3 Power Series

7.4 Taylor Series

7.5 The Periodic Functions

Appendix : Binomial Issues

8 The Complex Numbers and Fourier Series

8.0 Introduction

8.1 The Complex Numbers C

8.2 Complex Functions and Vectors

8.3 Fourier Series Theory

References

Index

Erscheint lt. Verlag 25.8.2014
Reihe/Serie Wiley Series in Pure and Applied Mathematics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Technik
Schlagworte Analysis • Computer Science • Computer Science Special Topics • Informatik • Mathematical Analysis • Mathematics • Mathematik • Mathematische Analyse • Real analysis • reelle Analysis • Reelle Zahl • Spezialthemen Informatik
ISBN-10 1-118-36771-5 / 1118367715
ISBN-13 978-1-118-36771-1 / 9781118367711
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich