Geometric Control Theory and Sub-Riemannian Geometry (eBook)
XII, 384 Seiten
Springer International Publishing (Verlag)
978-3-319-02132-4 (ISBN)
Prof. Gianna Stefani: From 1997 is Full Professor at University of Florence, Italy.
Prof. Ugo Boscain: Directeur de recherche CNRS (DR2) at the Center of Applied Mathematics and Probability (CMAP) of Ecole Polytechnique; Professeur charge de course in numerical analysis and optimization at Ecole Polytechnique (department of applied mathematics); Deputy team leader of the equipe-INRIA GECO Inria Saclay.
Prof. Jean-Paul Gauthier: Experience of JP Gauthier In Scientific Research (January 2011), Including; Research Team Management and Industrial Collaborations; JP Gauthier has scientific experience in several areas (pluridisciplinary); Honorary Member of Institut Universitaire de France (Promotion 1992).
Prof. Andrey Sarychev: Full Professor (Professore Ordinario di I Fascia) at the Department of Mathematics and Informatics U.Dini (DiMaI), University of Florence, Italy, since January 2013. Prof. Mario Sigalotti: Chargé de recherche de première classe (CR1) - Établissement : INRIA Saclay - Île-de-France - Équipe-projet : GECO.
Prof. Gianna Stefani: From 1997 is Full Professor at University of Florence, Italy.Prof. Ugo Boscain: Directeur de recherche CNRS (DR2) at the Center of Applied Mathematics and Probability (CMAP) of Ecole Polytechnique; Professeur charge de course in numerical analysis and optimization at Ecole Polytechnique (department of applied mathematics); Deputy team leader of the equipe-INRIA GECO Inria Saclay. Prof. Jean-Paul Gauthier: Experience of JP Gauthier In Scientific Research (January 2011), Including; Research Team Management and Industrial Collaborations; JP Gauthier has scientific experience in several areas (pluridisciplinary); Honorary Member of Institut Universitaire de France (Promotion 1992). Prof. Andrey Sarychev: Full Professor (Professore Ordinario di I Fascia) at the Department of Mathematics and Informatics U.Dini (DiMaI), University of Florence, Italy, since January 2013. Prof. Mario Sigalotti: Chargé de recherche de première classe (CR1) - Établissement : INRIA Saclay – Île-de-France - Équipe-projet : GECO.
1 A. A. Agrachev - Some open problems.- 2 D. Barilari, A. Lerario - Geometry of Maslov cycles.- 3 Y. Baryshnikov, B. Shapiro - How to Run a Centipede: a Topological Perspective.- 4 B. Bonnard, O. Cots, L. Jassionnesse - Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces.- 5 J-B. Caillau, C. Royer - On the injectivity and nonfocal domains of the ellipsoid of revolution.- 6 P. Cannarsa, R. Guglielmi - Null controllability in large time for the parabolic Grushin operator with singular potential.- 7 Y. Chitour, M. Godoy Molina, P. Kokkonen - The rolling problem: overview and challenges.- 8 A. A. Davydov, A. S. Platov - Optimal stationary exploitation of size-structured population with intra-specific competition.- 9 B. Doubrov, I. Zelenko - On geometry of affine control systems with one input.- 10 B. Franchi, V. Penso, R. Serapioni - Remarks on Lipschitz domains in Carnot groups.- 11 R. V. Gamkrelidze - Differential-geometric and invariance properties of the equations of Maximum Principle (MP).- 12 N. Garofalo - Curvature-dimension inequalities and Li-Yau inequalities in sub-Riemannian spaces.- 13 R. Ghezzi, F. Jean - Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds.- 14 V. Jurdjevic - The Delauney-Dubins Problem.- 15 M. Karmanova, S. Vodopyanov - On Local Approximation Theorem on Equiregular Carnot–Carathéodory spaces.- 16 C. Li - On curvature-type invariants for natural mechanical systems on sub-Riemannian structures associated with a principle G-bundle.- 17 I. Markina, S. Wojtowytsch - On the Alexandrov Topology of sub-Lorentzian Manifolds.- 18 R. Monti - The regularity problem for sub-Riemannian geodesics.- 19 L. Poggiolini, G. Stefani - A case study in strong optimality and structural stability of bang–singular extremals.- 20 A. Shirikyan - Approximate controllability of the viscous Burgers equation on the real line.- 21 M. Zhitomirskii - Homogeneous affine line fields and affine line fields in Lie algebras.
| Erscheint lt. Verlag | 5.6.2014 |
|---|---|
| Reihe/Serie | Springer INdAM Series | Springer INdAM Series |
| Zusatzinfo | XII, 384 p. |
| Verlagsort | Cham |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| Technik | |
| Schlagworte | control system • Geometric Control • sub-Riemannian geometry |
| ISBN-10 | 3-319-02132-X / 331902132X |
| ISBN-13 | 978-3-319-02132-4 / 9783319021324 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich