Introduction to Mixed Modelling (eBook)
John Wiley & Sons (Verlag)
978-1-118-86181-3 (ISBN)
Mixed modelling is very useful, and easier than you think!
Mixed modelling is now well established as a powerful approach to statistical data analysis. It is based on the recognition of random-effect terms in statistical models, leading to inferences and estimates that have much wider applicability and are more realistic than those otherwise obtained.
Introduction to Mixed Modelling leads the reader into mixed modelling as a natural extension of two more familiar methods, regression analysis and analysis of variance. It provides practical guidance combined with a clear explanation of the underlying concepts.
Like the first edition, this new edition shows diverse applications of mixed models, provides guidance on the identification of random-effect terms, and explains how to obtain and interpret best linear unbiased predictors (BLUPs). It also introduces several important new topics, including the following:
- Use of the software SAS, in addition to GenStat and R.
- Meta-analysis and the multiple testing problem.
- The Bayesian interpretation of mixed models.
Including numerous practical exercises with solutions, this book provides an ideal introduction to mixed modelling for final year undergraduate students, postgraduate students and professional researchers. It will appeal to readers from a wide range of scientific disciplines including statistics, biology, bioinformatics, medicine, agriculture, engineering, economics, archaeology and geography.
Praise for the first edition:
'One of the main strengths of the text is the bridge it provides between traditional analysis of variance and regression models and the more recently developed class of mixed models...Each chapter is well-motivated by at least one carefully chosen example...demonstrating the broad applicability of mixed models in many different disciplines...most readers will likely learn something new, and those previously unfamiliar with mixed models will obtain a solid foundation on this topic.'-Kerrie Nelson University of South Carolina, in American Statistician, 2007
Nicholas W. Galwey, Statistical Consultant, GlaxoSmithKline, Harlow, Essex, UK.
Mixed modelling is very useful, and easier than you think! Mixed modelling is now well established as a powerful approach to statistical data analysis. It is based on the recognition of random-effect terms in statistical models, leading to inferences and estimates that have much wider applicability and are more realistic than those otherwise obtained. Introduction to Mixed Modelling leads the reader into mixed modelling as a natural extension of two more familiar methods, regression analysis and analysis of variance. It provides practical guidance combined with a clear explanation of the underlying concepts. Like the first edition, this new edition shows diverse applications of mixed models, provides guidance on the identification of random-effect terms, and explains how to obtain and interpret best linear unbiased predictors (BLUPs). It also introduces several important new topics, including the following: Use of the software SAS, in addition to GenStat and R. Meta-analysis and the multiple testing problem. The Bayesian interpretation of mixed models. Including numerous practical exercises with solutions, this book provides an ideal introduction to mixed modelling for final year undergraduate students, postgraduate students and professional researchers. It will appeal to readers from a wide range of scientific disciplines including statistics, biology, bioinformatics, medicine, agriculture, engineering, economics, archaeology and geography. Praise for the first edition: One of the main strengths of the text is the bridge it provides between traditional analysis of variance and regression models and the more recently developed class of mixed models...Each chapter is well-motivated by at least one carefully chosen example...demonstrating the broad applicability of mixed models in many different disciplines...most readers will likely learn something new, and those previously unfamiliar with mixed models will obtain a solid foundation on this topic. Kerrie Nelson University of South Carolina, in American Statistician, 2007
Nicholas W. Galwey, Statistical Consultant, GlaxoSmithKline, Harlow, Essex, UK.
Preface
1. The need for more than one random-effect term when fitting a regression line
2. The need for more than one random-effect term in a designed experiment
3. Estimation of the variances of random-effect terms
4. Interval estimates for fixed-effect terms in mixed models
5. Estimation of random effects in mixed models: Best Linear Unbiased Predictors (BLUPs)
6. More advanced mixed models for more elaborate data sets
7. Three case studies
8. Meta-analysis and the multiple testing problem
9. The use of mixed models for the analysis of unbalanced experimental designs
10. Beyond mixed modeling
11. Why is the criterion for fitting mixed models called REsidual Maximum Likelihood?
Index
| Erscheint lt. Verlag | 8.8.2014 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
| Mathematik / Informatik ► Mathematik ► Statistik | |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| Technik | |
| Schlagworte | Ãkologie / Methoden, Statistik • Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applicability • Applied Probability & Statistics - Models • Biowissenschaften • Data • established • Estimates • Experimental Design • extension • familiar • inferences • Leads • Life Sciences • Methods • Methods & Statistics in Ecology • Modelling • Ökologie / Methoden, Statistik • Otherwise • powerful approach • randomeffect • Reader • Realistic • Recognition • Statistical • Statistical Models • Statistics • Statistik • Terms • useful • Versuchsplanung • wider |
| ISBN-10 | 1-118-86181-7 / 1118861817 |
| ISBN-13 | 978-1-118-86181-3 / 9781118861813 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich