Handbook for Automatic Computation
Springer Berlin (Verlag)
978-3-642-86942-6 (ISBN)
I Linear Systems, Least Squares and Linear Programming.- to Part I (J. H. Wilkinson) ..- Contribution I/1: Symmetric Decomposition of a Positive Definite Matrix.- Contribution I/2: Iterative Refinement of the Solution of a Positive Definite System of Equations.- Contribution I/3: Inversion of Positive Definite Matrices by the Gauss-Jordan Method.- Contribution I/4: Symmetric Decomposition of Positive Definite Band Matrices.- Contribution I/5: The Conjugate Gradient Method.- Contribution 1/6: Solution of Symmetric and Unsymmetric Band Equations and the Calculation of Eigenvectors of Band Matrices.- Contribution I/7: Solution of Real and Complex Systems of Linear Equations.- Contribution I/8: Linear Least Squares Solutions by Householder Transformations.- Contribution I/9: Elimination with Weighted Row Combinations for Solving Linear Equations and Least Squares Problems.- Contribution I/l0: Singular Value Decomposition and Least Squares Solutions.- Contribution I/l l: A Realization of the Simplex Method based on Triangular Decompositions.- II The Algebraic Eigenvalue Problem.- to Part II (J. H. Wilkinson).- Contribution II/l: The Jacobi Method for Real Symmetric Matrices.- Contribution II/2: Householder's Tridiagonalization of a Symmetric Matrix.- Contribution II/3: The QR and QL Algorithms for Symmetric Matrices.- Contribution II/4: The Implicit QL Algorithm.- Contribution II/5: Calculation of the Eigenvalues of a Symmetric Tridiagonal Matrix by the Method of Bisection.- Contribution II/6: Rational Q R Transformation with Newton Shift for Symmetric TridiagonalMatrices.- Contribution II/7: The QR Algorithm for Band Symmetric Matrices.- Contribution II/8: Tridiagonalization of a Symmetric Band Matrix.- Contribution II/9: Simultaneous Iteration Method for SymmetricMatrices.- Contribution II/l0: Reduction of the Symmetric Eigenproblem A x =?Bx and Related Problems to Standard Form.- Contribution II/11: Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors.- Contribution II/12: Solution to the Eigenproblem by a Norm Reducing Jacobi Type Method.- Contribution II/13: Similarity Reduction of a General Matrix to Hessenberg Form.- Contribution II/14: The QR Algorithm for Real Hessenberg Matrices.- Contribution II/15: Eigenvectors of Real and Complex Matrices by L R and Q R triangulari.- Contribution II/16: The Modified L R Algorithm for Complex Hessenberg Matrices.- Contribution II/l 7: Solution to the Complex Eigenproblem by a Norm Reducing Jacobi Type Method.- Contribution II/l 8: The Calculation of Specified Eigenvectors by Inverse Iteration.
| Erscheint lt. Verlag | 23.8.2014 |
|---|---|
| Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
| Mitarbeit |
Chef-Herausgeber: Friedrich L. Bauer |
| Zusatzinfo | IX, 441 p. 1 illus. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 679 g |
| Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
| Mathematik / Informatik ► Mathematik | |
| Schlagworte | Algebra • ALGOL • Algol W • algorithms • Calculation • Computer • eigenvalue problem • Equation • Finite • NATURAL • Numerical analysis • programming |
| ISBN-10 | 3-642-86942-4 / 3642869424 |
| ISBN-13 | 978-3-642-86942-6 / 9783642869426 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich