Artificial Neural Networks and Machine Learning -- ICANN 2014
24th International Conference on Artificial Neural Networks, Hamburg, Germany, September 15-19, 2014, Proceedings
Seiten
2014
Springer International Publishing (Verlag)
978-3-319-11178-0 (ISBN)
Springer International Publishing (Verlag)
978-3-319-11178-0 (ISBN)
The book constitutes the proceedings of the 24th International Conference on Artificial Neural Networks, ICANN 2014, held in Hamburg, Germany, in September 2014.
The 107 papers included in the proceedings were carefully reviewed and selected from 173 submissions. The focus of the papers is on following topics: recurrent networks; competitive learning and self-organisation; clustering and classification; trees and graphs; human-machine interaction; deep networks; theory; reinforcement learning and action; vision; supervised learning; dynamical models and time series; neuroscience; and applications.
The 107 papers included in the proceedings were carefully reviewed and selected from 173 submissions. The focus of the papers is on following topics: recurrent networks; competitive learning and self-organisation; clustering and classification; trees and graphs; human-machine interaction; deep networks; theory; reinforcement learning and action; vision; supervised learning; dynamical models and time series; neuroscience; and applications.
Recurrent Networks.- Sequence Learning.- Echo State Networks.- Recurrent Network Theory.- Competitive Learning and Self-Organisation.- Clustering and Classification.- Trees and Graphs.- Human-Machine Interaction.- Deep Networks.- Theory.- Optimization.- Layered Networks.- Reinforcement Learning and Action.- Vision.- Detection and Recognition.- Invariances and Shape Recovery.- Attention and Pose Estimation.- Supervised Learning.- Ensembles.- Regression.- Classification.- Dynamical Models and Time Series.- Neuroscience.- Cortical Models.- Line Attractors and Neural Fields.- Spiking and Single Cell Models.- Applications.- Users and Social Technologies.- Demonstrations.
| Erscheint lt. Verlag | 22.9.2014 |
|---|---|
| Reihe/Serie | Lecture Notes in Computer Science | Theoretical Computer Science and General Issues |
| Zusatzinfo | XXV, 852 p. 338 illus. |
| Verlagsort | Cham |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 1300 g |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| Schlagworte | Algorithm analysis and problem complexity • Computational Neuroscience • distributed computation • Dynamical Systems • Ensemble methods • evolving systems • machine learning • Neural networks • parallel distributed system • Particle swarm optimization • Reinforcement Learning • robust pattern recognition • Self-Organizing Maps • Speech Recognition • Support Vector Machines • Swarm intelligence • Turing Machines • Unsupervised Learning |
| ISBN-10 | 3-319-11178-7 / 3319111787 |
| ISBN-13 | 978-3-319-11178-0 / 9783319111780 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Eine praxisorientierte Einführung
Buch | Softcover (2025)
Springer Vieweg (Verlag)
CHF 53,15
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …
Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20
Buch | Softcover (2025)
Reclam, Philipp (Verlag)
CHF 11,20