Automatic Differentiation of Algorithms
From Simulation to Optimization
Seiten
2014
|
Softcover reprint of the original 1st ed. 2002
Springer-Verlag New York Inc.
978-1-4612-6543-6 (ISBN)
Springer-Verlag New York Inc.
978-1-4612-6543-6 (ISBN)
Automatic Differentiation (AD) is a maturing computational technology and has become a mainstream tool used by practicing scientists and computer engineers. The rapid advance of hardware computing power and AD tools has enabled practitioners to quickly generate derivative-enhanced versions of their code for a broad range of applications in applied research and development.
Automatic Differentiation of Algorithms provides a comprehensive and authoritative survey of all recent developments, new techniques, and tools for AD use. The book covers all aspects of the subject: mathematics, scientific programming (i.e., use of adjoints in optimization) and implementation (i.e., memory management problems). A strong theme of the book is the relationships between AD tools and other software tools, such as compilers and parallelizers. A rich variety of significant applications are presented as well, including optimum-shape design problems, for which AD offers more efficient tools and techniques.
Automatic Differentiation of Algorithms provides a comprehensive and authoritative survey of all recent developments, new techniques, and tools for AD use. The book covers all aspects of the subject: mathematics, scientific programming (i.e., use of adjoints in optimization) and implementation (i.e., memory management problems). A strong theme of the book is the relationships between AD tools and other software tools, such as compilers and parallelizers. A rich variety of significant applications are presented as well, including optimum-shape design problems, for which AD offers more efficient tools and techniques.
Part titles: Invited Contributions.- Parameter Identification and Least Squares.- Applications in Ode's and Optimal Control.- Applications in PDE's.- Applications in Science and Engineering.- Maintaining and Enhancing Parallelism.- Exploiting Structure and Sparsity.- Space-Time Tradeoffs in the Reverse Mode.- Use of Second and Higher Derivatives.- Error Estimates and Inclusions.
| Zusatzinfo | 84 Illustrations, black and white |
|---|---|
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
| ISBN-10 | 1-4612-6543-6 / 1461265436 |
| ISBN-13 | 978-1-4612-6543-6 / 9781461265436 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …
Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 38,90