Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Multiple Fuzzy Classification Systems - Rafał Scherer

Multiple Fuzzy Classification Systems

(Autor)

Buch | Softcover
XII, 132 Seiten
2014
Springer Berlin (Verlag)
9783642436574 (ISBN)
CHF 195,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book presents a novel approach for exploratory data analysis with ensembles of various neuro-fuzzy systems. It places emphasis on ensembles that can work on incomplete data, thanks to rough set theory.

Fuzzy classifiers are important tools in exploratory data analysis, which is a vital set of methods used in various engineering, scientific and business applications. Fuzzy classifiers use fuzzy rules and do not require assumptions common to statistical classification. Rough set theory is useful when data sets are incomplete. It defines a formal approximation of crisp sets by providing the lower and the upper approximation of the original set. Systems based on rough sets have natural ability to work on such data and incomplete vectors do not have to be preprocessed before classification. To achieve better performance than existing machine learning systems, fuzzy classifiers and rough sets can be combined in ensembles. Such ensembles consist of a finite set of learning models, usually weak learners.

The present book discusses the three aforementioned fields - fuzzy systems, rough sets and ensemble techniques. As the trained ensemble should represent a single hypothesis, a lot of attention is placed on the possibility to combine fuzzy rules from fuzzy systems being members of classification ensemble. Furthermore, an emphasis is placed on ensembles that can work on incomplete data, thanks to rough set theory.

.

Introduction to fuzzy systems.- Ensemble techniques.- Relational modular fuzzy systems.- Ensembles of the Mamdani fuzzy systems.- Logical type fuzzy systems.- Takagi-Sugeno fuzzy systems.- Rough-neuro-fuzzy Ensembles for Classification with Missing Data.- Concluding remarks and challenges for future research.

Erscheint lt. Verlag 18.7.2014
Reihe/Serie Studies in Fuzziness and Soft Computing
Zusatzinfo XII, 132 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 231 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Boosting • Classifiers • Decision Making • Ensemble Techniques • Fuzzy Systems • Mamdani Fuzzy Systems • Negative Correlation Learning • Neuro-Rough-Fuzzy Ensembles • pattern recognition • Takagi-Sugeno Fuzzy Systems
ISBN-13 9783642436574 / 9783642436574
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20