Harmonic Analysis and Boundary Value Problems
American Mathematical Society (Verlag)
978-0-8218-2745-1 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
This volume presents research and expository articles by the participants of the 25th Arkansas Spring Lecture Series on 'Recent Progress in the Study of Harmonic Measure from a Geometric and Analytic Point of View' held at the University of Arkansas (Fayetteville). Papers in this volume provide clear and concise presentations of many problems that are at the forefront of harmonic analysis and partial differential equations. The following topics are featured: the solution of the Kato conjecture, the 'two bricks' problem, new results on Cauchy integrals on non-smooth curves, the Neumann problem for sub-Laplacians, and a new general approach to both divergence and nondivergence second order parabolic equations based on growth theorems. The articles in this volume offer both students and researchers a comprehensive volume of current results in the field.
The mixed boundary problem in $L^p$ and Hardy spaces for Laplace's equation on a Lipschitz domain by J. D. Sykes and R. M. Brown Sub-elliptic Besov spaces and the characterization of traces on lower dimensional manifolds by D. Danielli, N. Garofalo, and D.-M. Nhieu The solution of the Kato problem by S. Hofmann A decomposition of functions with vanishing mean oscillation by M. B. Korey General second order, strongly elliptic systems in low dimensional nonsmooth manifolds by D. Mitrea and M. Mitrea Growth theorems and Harnack inequality for second order parabolic equations by E. Ferretti and M. V. Safonov Absolute continuity of generalized periodic Schrodinger operators by Z. Shen The use of Rellich identities on certain nongraph boundaries by G. C. Verchota $L^2$ boundedness of the Cauchy integral and Menger curvature by J. Verdera.
| Erscheint lt. Verlag | 30.7.2001 |
|---|---|
| Reihe/Serie | Contemporary Mathematics |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 312 g |
| Themenwelt | Mathematik / Informatik ► Mathematik |
| ISBN-10 | 0-8218-2745-6 / 0821827456 |
| ISBN-13 | 978-0-8218-2745-1 / 9780821827451 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich