Recent Methods from Statistics and Machine Learning for Credit Scoring
Seiten
2014
|
1., Aufl.
Cuvillier Verlag
978-3-95404-736-9 (ISBN)
Cuvillier Verlag
978-3-95404-736-9 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
Credit scoring models are the basis for financial institutions like retail and consumer credit banks. The purpose of the models is to evaluate the likelihood of credit applicants defaulting in order to decide whether to grant them credit. The area under the receiver operating characteristic (ROC) curve (AUC) is one of the most commonly used measures to evaluate predictive performance in credit scoring.
The aim of this thesis is to benchmark different methods for building scoring models in order to maximize the AUC. While this measure is used to evaluate the predictive accuracy of the presented algorithms, the AUC is especially introduced as direct optimization criterion.
The aim of this thesis is to benchmark different methods for building scoring models in order to maximize the AUC. While this measure is used to evaluate the predictive accuracy of the presented algorithms, the AUC is especially introduced as direct optimization criterion.
| Erscheint lt. Verlag | 8.7.2014 |
|---|---|
| Sprache | englisch |
| Einbandart | Paperback |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
| Schlagworte | AUC • Banking • Credit Scoring • Optimization |
| ISBN-10 | 3-95404-736-5 / 3954047365 |
| ISBN-13 | 978-3-95404-736-9 / 9783954047369 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Stochastik: von Abweichungen bis Zufall
Buch | Softcover (2025)
De Gruyter (Verlag)
CHF 48,90
Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 69,95