Definition dynamischer Systeme durch Differentialgleichungen (eBook)
33 Seiten
GRIN Verlag
9783656691143 (ISBN)
- sind die Lehre von allen Dingen, die sich mit der Zeit ändern
- das beeinhaltet das Universum, das Leben und den ganzen Rest
• Himmelsmechanik
• biologische Populationen
• das Wetter
• physikalisches Pendel
• Computersimulationen
• mathematische Iterationsverfahren
Besonders wichtig in der Technik sind lineare und zeitinvariante Systeme, die durch lineare gewöhnliche Differentialgleichungen mit konstanten Koeffizienten beschrieben werden.
Dies kann durch ein System von n-Differentialgleichungen
1. Ordnung geschehen.
Die darin auftretenden Koeffizienten sind wegen der Zeitinvarianz konstant.
Was ist eine Differentialgleichung?
1Eine Differentialgleichung ist also eine Gleichung, in der eine Funktion(hier: Signal), deren Ableitungen, die Variable(hier: Zeit), von der die Funktion abhängt und Konstanten vorkommen.
Die Ordnung bezeichnet dabei die höchste Ableitung, die vorkommt.
Man spricht auch von einem System von g Differentialgleichungen für die q Komponenten w1,…,wq von w. Gesucht ist die Menge aller Funktionen, die diese Differentialgleichung erfüllt. Also das Ziel ist, die Lösungen zu finden.
| Erscheint lt. Verlag | 7.7.2014 |
|---|---|
| Verlagsort | München |
| Sprache | deutsch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
| Technik | |
| Schlagworte | Definition • Differentialgleichungen • Systeme |
| ISBN-13 | 9783656691143 / 9783656691143 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich