Geometric Function Theory and Non-linear Analysis
Seiten
2001
Oxford University Press (Verlag)
9780198509295 (ISBN)
Oxford University Press (Verlag)
9780198509295 (ISBN)
This volume explores the connections between the geometry of mappings and many important areas of modern mathematics such as Harmonic and non-linear Analysis, the theory of Partial Differential Equations, Conformal Geometry and Topology. It provides a comprehensive and up to date account and an overview of the subject as a whole.
This book provides a survey of recent developments in the field of non-linear analysis and the geometry of mappings.
Sobolev mappings, quasiconformal mappings, or deformations, between subsets of Euclidean space, or manifolds or more general geometric objects may arise as the solutions to certain optimisation problems in the calculus of variations or in non-linear elasticity, as the solutions to differential equations (particularly in conformal geometry), as local co-ordinates on a manifold or as geometric realisations of abstract isomorphisms between spaces such as those that arise in dynamical systems (for instance in holomorphic dynamics and Kleinian groups). In each case the regularity and geometric properties of these mappings and related non-linear quantities such as Jacobians, tells something about the problems and the spaces under consideration.
The applications studied include aspects of harmonic analysis, elliptic PDE theory, differential geometry, the calculus of variations as well as complex dynamics and other areas. Indeed it is the strong interactions between these areas and the geometry of mappings that underscores and motivates the authors' work. Much recent work is included. Even in the classical setting of the Beltrami equation or measurable Riemann mapping theorem, which plays a central role in holomorphic dynamics, Teichmuller theory and low dimensional topology and geometry, the authors present precise results in the degenerate elliptic setting. The governing equations of non-linear elasticity and quasiconformal geometry are studied intensively in the degenerate elliptic setting, and there are suggestions for potential applications for researchers in other areas.
This book provides a survey of recent developments in the field of non-linear analysis and the geometry of mappings.
Sobolev mappings, quasiconformal mappings, or deformations, between subsets of Euclidean space, or manifolds or more general geometric objects may arise as the solutions to certain optimisation problems in the calculus of variations or in non-linear elasticity, as the solutions to differential equations (particularly in conformal geometry), as local co-ordinates on a manifold or as geometric realisations of abstract isomorphisms between spaces such as those that arise in dynamical systems (for instance in holomorphic dynamics and Kleinian groups). In each case the regularity and geometric properties of these mappings and related non-linear quantities such as Jacobians, tells something about the problems and the spaces under consideration.
The applications studied include aspects of harmonic analysis, elliptic PDE theory, differential geometry, the calculus of variations as well as complex dynamics and other areas. Indeed it is the strong interactions between these areas and the geometry of mappings that underscores and motivates the authors' work. Much recent work is included. Even in the classical setting of the Beltrami equation or measurable Riemann mapping theorem, which plays a central role in holomorphic dynamics, Teichmuller theory and low dimensional topology and geometry, the authors present precise results in the degenerate elliptic setting. The governing equations of non-linear elasticity and quasiconformal geometry are studied intensively in the degenerate elliptic setting, and there are suggestions for potential applications for researchers in other areas.
0. Introduction and Overview ; 1. Conformal Mappings ; 2. Stability of the Mobius Group ; 3. Sobolev Theory and Function Spaces ; 4. The Liouville Theorem ; 5. Mappings of Finite Distortion ; 6. Continuity ; 7. Compactness ; 8. Topics from Multilinear Algebra ; 9. Differential Forms ; 10. Beltrami Equations ; 11. Riesz Transforms ; 12. Integral Estimates ; 13. The Gehring Lemma ; 14. The Governing Equations ; 15. Topological Properties of Mappings of Bounded Distortion ; 16. Painleve's Theorem in Space ; 17. Even Dimensions ; 18. Picard and Montel Theorems in Space ; 19. Conformal Structures ; 20. Uniformly Quasiregular Mappings ; 21. Quasiconformal Groups ; 22. Analytic Continuation for Beltrami Systems
| Erscheint lt. Verlag | 11.10.2001 |
|---|---|
| Reihe/Serie | Oxford Mathematical Monographs |
| Verlagsort | Oxford |
| Sprache | englisch |
| Maße | 162 x 242 mm |
| Gewicht | 924 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| ISBN-13 | 9780198509295 / 9780198509295 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90