Finite Markov Chains and Algorithmic Applications
Seiten
2002
Cambridge University Press (Verlag)
9780521890014 (ISBN)
Cambridge University Press (Verlag)
9780521890014 (ISBN)
This 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomised algorithms with important applications in optimisation and other problems in computing.
Based on a lecture course given at Chalmers University of Technology, this 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomized algorithms with important applications in optimization and other problems in computing. Amongst the algorithms covered are the Markov chain Monte Carlo method, simulated annealing, and the recent Propp-Wilson algorithm. This book will appeal not only to mathematicians, but also to students of statistics and computer science. The subject matter is introduced in a clear and concise fashion and the numerous exercises included will help students to deepen their understanding.
Based on a lecture course given at Chalmers University of Technology, this 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomized algorithms with important applications in optimization and other problems in computing. Amongst the algorithms covered are the Markov chain Monte Carlo method, simulated annealing, and the recent Propp-Wilson algorithm. This book will appeal not only to mathematicians, but also to students of statistics and computer science. The subject matter is introduced in a clear and concise fashion and the numerous exercises included will help students to deepen their understanding.
1. Basics of probability theory; 2. Markov chains; 3. Computer simulation of Markov chains; 4. Irreducible and aperiodic Markov chains; 5. Stationary distributions; 6. Reversible Markov chains; 7. Markov chain Monte Carlo; 8. Fast convergence of MCMC algorithms; 9. Approximate counting; 10. Propp-Wilson algorithm; 11. Sandwiching; 12. Propp-Wilson with read once randomness; 13. Simulated annealing; 14. Further reading.
| Erscheint lt. Verlag | 30.5.2002 |
|---|---|
| Reihe/Serie | London Mathematical Society Student Texts |
| Zusatzinfo | 20 Line drawings, unspecified |
| Verlagsort | Cambridge |
| Sprache | englisch |
| Maße | 153 x 228 mm |
| Gewicht | 200 g |
| Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
| Mathematik / Informatik ► Mathematik ► Analysis | |
| Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
| Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| ISBN-13 | 9780521890014 / 9780521890014 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 53,15
Teil 2 der gestreckten Abschlussprüfung Fachinformatiker/-in …
Buch | Softcover (2025)
Europa-Lehrmittel (Verlag)
CHF 37,90