Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Learning in Non-Stationary Environments -

Learning in Non-Stationary Environments

Methods and Applications
Buch | Softcover
440 Seiten
2014 | 2012 ed.
Springer-Verlag New York Inc.
9781489993403 (ISBN)
CHF 224,65 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems.
Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.

 

Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy.

 

Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations.

 

This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.

 

Prologue.- Part I: Dynamic Methods for Unsupervised Learning Problems.- Incremental Statistical Measures.- A Granular Description of Data: A Study in Evolvable Systems.- Incremental Spectral Clustering.- Part II: Dynamic Methods for Supervised Classification Problems.- Semi-Supervised Dynamic Fuzzy K-Nearest Neighbors.- Making Early Predictions of the Accuracy of Machine Learning Classifiers.- Incremental Classifier Fusion and its Applications in Industrial Monotiroing and Diagnostics.- Instance-Based Classification and Regression on Data Streams.- Part III: Dynamic Methods for Supervised Regression Problems.- Flexible Evolving Fuzzy Inference Systems from Data Streams (FLEXFIS++).- Sequential Adaptive Fuzzy Inference System for Function Approximation Problems.- Interval Approach for Evolving Granular System Modeling.- Part IV: Applications of Learning in Non-Stationary Environments.- Dynamic Learning in Multiple Time-Series in a Non-Stationary Environmenty.- Optimizing Feature Calculation in Adaptive Machine Vision Systems.- On-line Quality Contol with Flexible Evolving Fuzzy Systems.- Identification of a Class of Hybrid Dynamic Systems.

Erscheint lt. Verlag 8.5.2014
Zusatzinfo XII, 440 p.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte adaptive modeling • Data streams • drifts and shifts • dynamic dimension reduction • Dynamic learning • huge data bases • incremental learning • knowledge extraction • on-line industrial applications • on-line modeling
ISBN-13 9781489993403 / 9781489993403
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95