Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Practical Applications of Sparse Modeling -

Practical Applications of Sparse Modeling

Buch | Hardcover
264 Seiten
2014
MIT Press (Verlag)
978-0-262-02772-4 (ISBN)
CHF 13,95 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision.

Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision.

Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models.

Contributors
A. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Remi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing

Irina Rish is a Research Staff Member at IBM T. J. Watson Research Center, New York. Guillermo Cecchi is a Research Staff Member at IBM T. J. Watson Research Center, New York. Aurelie Lozano is a Research Staff Member at IBM T. J. Watson Research Center, New York. Alexandru Niculescu-Mizil is a Researcher at the Machine Learning Department at NEC Labs America, Princeton, New Jersey. Irina Rish is a Research Staff Member at IBM T. J. Watson Research Center, New York. Guillermo Cecchi is a Research Staff Member at IBM T. J. Watson Research Center, New York. Aurelie Lozano is a Research Staff Member at IBM T. J. Watson Research Center, New York. Alexandru Niculescu-Mizil is a Researcher at the Machine Learning Department at NEC Labs America, Princeton, New Jersey. Zoubin Ghahramani is Lecturer in the Gatsby Computational Neuroscience Unit at University College London.

Reihe/Serie Practical Applications of Sparse Modeling
Zusatzinfo 14 color illus., 40 b&w illus.
Verlagsort Cambridge, Mass.
Sprache englisch
Maße 203 x 254 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-262-02772-0 / 0262027720
ISBN-13 978-0-262-02772-4 / 9780262027724
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20