Exotic Smoothness And Physics: Differential Topology And Spacetime Models
Seiten
2007
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-4195-7 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-02-4195-7 (ISBN)
The revolution in differential topology related to the discovery of non-standard smoothness structures on topologically trivial manifolds suggests many opportunities for applications of potentially deep importance for the spacetime models of theoretical physics. This book provides an introductory survey of some of the relevant mathematics.
The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.
The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.
Introduction and Background; Algebraic Tools for Topology; Smooth Manifolds, Geometry; Bundles, Geometry, Gauge Theory; Gauge Theory and Moduli Space; A Guide to the Classification of Manifolds; Early Exotic Manifolds; The First Results in Dimension Four; Seiberg-Witten Theory: The Modern Approach; Physical Implications; From Differential Structures to Operator Algebras and Geometric Structures.
| Erscheint lt. Verlag | 24.1.2007 |
|---|---|
| Verlagsort | Singapore |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| Naturwissenschaften ► Physik / Astronomie | |
| ISBN-10 | 981-02-4195-X / 981024195X |
| ISBN-13 | 978-981-02-4195-7 / 9789810241957 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Anwendungen in Natur und Technik
Buch | Softcover (2021)
Springer Berlin (Verlag)
CHF 55,95