Linear Systems and Optimal Control
Springer Berlin (Verlag)
978-3-642-64787-1 (ISBN)
1. State-Space Descriptions.- 1.1 Introduction.- 1.2 An Example of Input-Output Relations.- 1.3 An Example of State-Space Descriptions.- 1.4 State-Space Models.- Exercises.- 2. State Transition Equations and Matrices.- 2.1 Continuous-Time Linear Systems.- 2.2 Picard's Iteration.- 2.3 Discrete-Time Linear Systems.- 2.4 Discretization.- Exercises.- 3. Controllability.- 3.1 Control and Observation Equations.- 3.2 Controllability of Continuous-Time Linear Systems.- 3.3 Complete Controllability of Continuous-Time Linear Systems.- 3.4 Controllability and Complete Controllability of Discrete-Time Linear Systems.- Exercises.- 4. Observability and Dual Systems.- 4.1 Observability of Continuous-Time Linear Systems.- 4.2 Observability of Discrete-Time Linear Systems.- 4.3 Duality of Linear Systems.- 4.4 Dual Time-Varying Discrete-Time Linear Systems.- Exercises.- 5. Time-Invariant Linear Systems.- 5.1 Preliminary Remarks.- 5.2 The Kalman Canonical Decomposition.- 5.3 Transfer Functions.- 5.4 Pole-Zero Cancellation of Transfer Functions.- Exercises.- 6. Stability.- 6.1 Free Systems and Equilibrium Points.- 6.2 State-Stability of Continuous-Time Linear Systems.- 6.3 State-Stability of Discrete-Time Linear Systems.- 6.4 Input-Output Stability of Continuous-Time Linear Systems.- 6.5 Input-Output Stability of Discrete-Time Linear Systems.- Exercises.- 7. Optimal Control Problems and Variational Methods.- 7.1 The Lagrange, Bolza, and Mayer Problems.- 7.2 A Variational Method for Continuous-Time Systems.- 7.3 Two Examples.- 7.4 A Variational Method for Discrete-Time Systems.- Exercises.- 8. Dynamic Programming.- 8.1 The Optimality Principle.- 8.2 Continuous-Time Dynamic Programming.- 8.3 Discrete-Time Dynamic Programming.- 8.4 The Minimum Principle of Pontryagin.- Exercises.- 9.Minimum-Time Optimal Control Problems.- 9.1 Existence of the Optimal Control Function.- 9.2 The Bang-Bang Principle.- 9.3 The Minimum Principle of Pontryagin for Minimum-Time Optimal Control Problems.- 9.4 Normal Systems.- Exercises.- 10. Notes and References.- 10.1 Reachability and Constructibility.- 10.2 Differential Controllability.- 10.3 State Reconstruction and Observers.- 10.4 The Kalman Canonical Decomposition.- 10.5 Minimal Realization.- 10.6 Stability of Nonlinear Systems.- 10.7 Stabilization.- 10.8 Matrix Riccati Equations.- 10.9 Pontryagin's Maximum Principle.- 10.10 Optimal Control of Distributed Parameter Systems.- 10.11 Stochastic Optimal Control.- References.- Answers and Hints to Exercises.- Notation.
| Erscheint lt. Verlag | 15.4.2014 |
|---|---|
| Reihe/Serie | Springer Series in Information Sciences |
| Zusatzinfo | VIII, 155 p. 1 illus. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 257 g |
| Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
| Mathematik / Informatik ► Mathematik | |
| Schlagworte | Complexity • nonlinear system • Notation • optimal control • programming • System • Systems Engineering |
| ISBN-10 | 3-642-64787-1 / 3642647871 |
| ISBN-13 | 978-3-642-64787-1 / 9783642647871 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich