Continuous Transformations in Analysis
Springer Berlin (Verlag)
978-3-642-85991-5 (ISBN)
I. Background in Topology.-
I.1. Survey of general topology.-
I.2. Survey of Euclidean spaces.-
I.3. Survey of Abelian groups.-
I.4. Mayer complexes.-
I.5. Formal complexes.-
I.6. General cohomology theory.-
I.7. Cohomology groups in Euclidean spaces.- II. Topological study of continuous transformations in Rn.-
II.1. Orientation in Rn.-
II.2. The topological index.-
II.3. Multiplicity functions and index functions.- III. Background in Analysis.-
III.1. Survey of functions of real variables.-
III.2. Functions of open intervals in Rn.- IV. Bounded variation and absolute continuity in Rn.-
IV.1. Measurability questions.-
IV.2. Bounded variation and absolute continuity with respect to a base-function.-
IV.3. Bounded variation and absolute continuity with respect to a multiplicity function.-
IV.4. Essential bounded variation and absolute continuity.-
IV.5. Bounded variation and absolute continuity in the Banach sense.- V. Differentiable transformations in Rn.-
V.1. Continuous transformations in R1.-
V.2. Local approximations in Rn.-
V.3. Special classes of differentiable transformations in Rn.- VI. Continuous transformations in R2.-
VI.1. The topological index in R2.-
VI.2. Special features of continuous transformations in R2.-
VI.3. Special classes of differentiable transformations in R2.
| Erscheint lt. Verlag | 9.4.2012 |
|---|---|
| Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
| Zusatzinfo | VIII, 442 p. 2 illus. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 633 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| Schlagworte | Algebraic • Analysis • Calculus • continuous function • Equation • Function • Topology • Variable |
| ISBN-10 | 3-642-85991-7 / 3642859917 |
| ISBN-13 | 978-3-642-85991-5 / 9783642859915 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich