Semiclassical Standing Waves with Clustering Peaks for Nonlinear Schrodinger Equations
Seiten
2014
American Mathematical Society (Verlag)
978-0-8218-9163-6 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-9163-6 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Examines the following singularly perturbed problem: - 2 ?u V(x)u=f(u) in R N . Their main result is the existence of a family of solutions with peaks that cluster near a local maximum of V(x). A local variational and deformation argument in an infinite dimensional space is developed to establish the existence of such a family for a general class of nonlinearities f .
The authors study the following singularly perturbed problem: −ϵ 2 Δu V(x)u=f(u) in R N . Their main result is the existence of a family of solutions with peaks that cluster near a local maximum of V(x) . A local variational and deformation argument in an infinite dimensional space is developed to establish the existence of such a family for a general class of nonlinearities f .
The authors study the following singularly perturbed problem: −ϵ 2 Δu V(x)u=f(u) in R N . Their main result is the existence of a family of solutions with peaks that cluster near a local maximum of V(x) . A local variational and deformation argument in an infinite dimensional space is developed to establish the existence of such a family for a general class of nonlinearities f .
Jaeyoung Byeon, KAIST, Daejeon, Republic of Korea. Kazunaga Tanaka, Waseda University, Tokyo, Japan.
Introduction and results
Preliminaries
Local centers of mass
Neighborhood Ω ϵ (ρ,R,β) and minimization for a tail of u in Ω ϵ
A gradient estimate for the energy functional
Translation flow associated to a gradient flow of V(x) on R N
Iteration procedure for the gradient flow and the translation flow
An (N 1)ℓ 0 -dimensional initial path and an intersection result
Completion of the proof of Theorem 1.3
Proof of Proposition 8.3
Proof of Lemma 6.1
Generalization to a saddle point setting
Bibliography
| Erscheint lt. Verlag | 22.9.2014 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Maße | 178 x 254 mm |
| Gewicht | 164 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
| Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
| ISBN-10 | 0-8218-9163-4 / 0821891634 |
| ISBN-13 | 978-0-8218-9163-6 / 9780821891636 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90