Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Modeling and Reasoning with Bayesian Networks - Adnan Darwiche

Modeling and Reasoning with Bayesian Networks

(Autor)

Buch | Softcover
562 Seiten
2014
Cambridge University Press (Verlag)
978-1-107-67842-2 (ISBN)
CHF 108,20 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis.
This book is a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The treatment of exact algorithms covers the main inference paradigms based on elimination and conditioning and includes advanced methods for compiling Bayesian networks, time-space tradeoffs, and exploiting local structure of massively connected networks. The treatment of approximate algorithms covers the main inference paradigms based on sampling and optimization and includes influential algorithms such as importance sampling, MCMC, and belief propagation. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.

Adnan Darwiche is a Professor in the Department of Computer Science at the University of California, Los Angeles.

1. Introduction; 2. Propositional logic; 3. Probability calculus; 4. Bayesian networks; 5. Building Bayesian networks; 6. Inference by variable elimination; 7. Inference by factor elimination; 8. Inference by conditioning; 9. Models for graph decomposition; 10. Most likely instantiations; 11. The complexity of probabilistic inference; 12. Compiling Bayesian networks; 13. Inference with local structure; 14. Approximate inference by belief propagation; 15. Approximate inference by stochastic sampling; 16. Sensitivity analysis; 17. Learning: the maximum likelihood approach; 18. Learning: the Bayesian approach; Appendix A: notation; Appendix B: concepts from information theory; Appendix C: fixed point iterative methods; Appendix D: constrained optimization.

Zusatzinfo Worked examples or Exercises; 64 Tables, unspecified; 10 Halftones, unspecified; 236 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 178 x 254 mm
Gewicht 960 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
ISBN-10 1-107-67842-0 / 1107678420
ISBN-13 978-1-107-67842-2 / 9781107678422
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20